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Abstract

In this paper, we propose a new learning technique named
message-dropout to improve the performance for multi-agent
deep reinforcement learning under two application scenar-
ios: 1) classical multi-agent reinforcement learning with di-
rect message communication among agents and 2) central-
ized training with decentralized execution. In the first appli-
cation scenario of multi-agent systems in which direct mes-
sage communication among agents is allowed, the message-
dropout technique drops out the received messages from
other agents in a block-wise manner with a certain proba-
bility in the training phase and compensates for this effect
by multiplying the weights of the dropped-out block units
with a correction probability. The applied message-dropout
technique effectively handles the increased input dimension
in multi-agent reinforcement learning with communication
and makes learning robust against communication errors in
the execution phase. In the second application scenario of
centralized training with decentralized execution, we par-
ticularly consider the application of the proposed message-
dropout to Multi-Agent Deep Deterministic Policy Gradient
(MADDPG), which uses a centralized critic to train a de-
centralized actor for each agent. We evaluate the proposed
message-dropout technique for several games, and numeri-
cal results show that the proposed message-dropout technique
with proper dropout rate improves the reinforcement learning
performance significantly in terms of the training speed and
the steady-state performance in the execution phase.

1 Introduction
Multi-Agent Deep Reinforcement Learning (MADRL) is
gaining increasing attention from the research community
with the recent success of deep learning because many of
practical decision-making problems such as connected self-
driving cars and collaborative drone navigation are modeled
as multi-agent systems requiring action control. There are
mainly two approaches in MADRL: one is centralized con-
trol and the other is decentralized control. The centralized
control approach assumes that there exists a central con-
troller which determines the actions of all agents based on all
the observations of all agents. That is, the central controller
has a policy which maps the joint observation to a joint ac-
tion. Since the action is based on the joint observation, this
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approach eases the problem of lack of full observability of
the global state in partially observable environments (Gold-
man and Zilberstein 2004). However, this approach has the
problem of the curse of dimensionality because the state-
action space grows exponentially as the number of agents
increases (Buşoniu, Babuška, and De Schutter 2010). More-
over, exploration, which is essential in RL, becomes more
difficult than the single-agent RL case due to the huge state-
action space. Hence, to simplify the problem, the decentral-
ized control approach was considered. In fully decentralized
multi-agent control, each agent decides its action based only
on own observation, while treating other agents as a part
of the environment, to reduce the curse of dimensionality.
However, this approach eliminates the cooperative benefit
from the presence of other agents and suffers from perfor-
mance degradation.

In order to improve the performance of the decentral-
ized control, several methods have been studied. First, multi-
agent systems with decentralized control with communica-
tion (DCC) was studied (Goldman and Zilberstein 2004). In
the framework of MADRL with DCC, the agents communi-
cate with each other by sending messages both in the train-
ing and execution phases, and the policy of each agent pa-
rameterized by a deep neural network determines the action
of the agent based on own observation and the received mes-
sages from other agents. To incorporate the messages from
other agents, the size of the deep neural network of each
agent should be increased as the number of message-passing
agents increases. However, if the network size becomes too
large, training becomes difficult and may fail. Another ap-
proach is centralized learning with decentralized execution,
allowing each agent to use the information of other agents
only in the training phase. In particular, recently-introduced
MADDPG (Lowe and Mordatch 2017), which uses a cen-
tralized critic to train a decentralized policy for each agent,
belongs to this second category. In MADDPG, the central-
ized critic takes all of other agents’ observations and actions
as input and hence the input space of each critic exponen-
tially grows with the number of agents. In both approaches,
as the number of agents in the system increases, the input
dimension increases, learning becomes difficult, and much
data is required for training. Hence, it is an important prob-
lem to properly handle the increased input dimension and
devise an efficient learning algorithm for such MADRL with



information exchange.
In this paper, motivated from dropout (Srivastava et al.

2014), we propose a new training method, named message-
dropout, yielding efficient learning for MADRL with infor-
mation exchange with large input dimensions. The proposed
method improves learning performance when it is applied
to MADRL with information exchange. Furthermore, when
it is applied to the scenario of DCC, the proposed method
makes learning robust against communication errors in the
execution phase.

2 Background
2.1 A Partially Observable Stochastic Game
In MADRL, multiple agents learn how to act to maximize
their future rewards while sequentially interacting with the
environment. The procedure can be described by a Partially
Observable Stochastic Game (POSG) defined by the tuple
< I,S, {Ai}, {Ωi}, T ,O, {Ri} >, where I is the set of
agents {1, · · · , N}, Ai is the action space of agent i, and
Ωi is the observation space of agent i. At each time step t,
the environment has a global state st ∈ S and agent i ob-
serves its local observation oit ∈ Ωi, which is determined
by the observation probability O : S ×

−→
A ×

−→
Ω → [0, 1],

where
−→
A =

∏N
i=1Ai and

−→
Ω =

∏N
i=1 Ωi are the joint

action space and the joint observation space, respectively.
Agent i executes action ait ∈ Ai, which yields the next
global state st+1 with the state transition probability T :

S ×
−→
A × S → [0, 1], receives the reward rit according to

the reward function Ri : S ×
−→
A → R, and obtains the next

observation oit+1. The discounted return for agent i is de-
fined as Rit =

∑∞
t′=t γ

t′rit′ where γ ∈ [0, 1] is the discount-
ing factor. In POSG, the Q-function Qi(s, ai) of agent i can
be approximated by Qi(τ i, ai), where τ i is the joint action-
observation history of agent i. However, learning the action-
value function based on the action-observation history is dif-
ficult. In this paper, we simply approximate Qi(s, ai) with
Qi(oi, ai) = E[Rit|oit = oi, ait = ai]. Note that a recur-
rent neural network can be used to minimize the approxi-
mation error between Qi(s, ai) and Qi(oi, ai) (Hausknecht
and Stone 2015). The goal of each agent is to maximize its
expected return, which is equivalent to maximizing its Q-
function. (Note that in this paragraph, we explained the fully
decentralized case.)

2.2 Independent Q-Learning
Independent Q-Learning (IQL), which is one of the popular
decentralized multi-agent RL algorithms in the fully observ-
able case (Tan 1993), is a simple extension of Q-learning
to multi-agent setting. Each agent estimates its own opti-
mal Q-function, Q∗(s, a) = argmaxπQ

π(s, a), which sat-
isfies the Bellman optimality equation Q∗(s, a) = E[r +
γmaxa′Q∗(s′, a′)|s, a]. Under the assumption of full ob-
servability at each agent and fully decentralized control,
Tampuu et al. combined IQL with deep Q-network (DQN),
and proposed that each agent trains its Q-function parame-
terized by a neural network θi by minimizing the loss func-

tion (Tampuu et al. 2017)

L(θi) = E(s,ai,r,s′)∼Di
[
(yi −Qi(s, ai; θi))2

]
(1)

where Di is the replay memory and yi = r +
γmaxaiQ(s′, ai; θi−) is the target Q-value for agent i. Here,
θi− is the target network for agent i.

In the case of POSG with fully decentralized control, the
above loss function can be modified to

L(θi) = E(oi,ai,ri,(oi)′)∼Di
[
(yi −Qi(oi, ai; θi))2

]
(2)

where yi = ri+γmaxaiQ(oi, ai; θi−). Here,Qi(s, ai; θi) in
the fully observable case is approximated withQi(oi, ai; θi)
with the local partial observation oi, as described in Section
2.1.

2.3 Multi-Agent DDPG
As an extension of DDPG to multi-agent setting, MADDPG
was proposed to use a decentralized policy with a central-
ized critic for each agent (Lowe and Mordatch 2017). The
centralized critic uses additional information about the poli-
cies of other agents, and this helps learn the policy effec-
tively in the training phase. The centralized critic for agent
i is represented by Qiµ(x,−→a ; θiQ) parameterized by a neu-
ral network θiQ, where µ = {µ1, ..., µN} is the collection of
all agents’ deterministic policies, x = (o1, · · · , oN ), and−→a = (a1, · · · , aN ). Each agent trains its Q-function by
minimizing the loss function

L(θiQ) = Ex,a,x′∼D
[
(yi −Qiµ(x,−→a ; θiQ))2

]
where yi = ri + γQiµ′ (x′,

−→
a′ ; θi−Q )|a′j=µ′j(o′j), x′ =

(o′
1
, · · · , o′N ), and D is the replay memory. Here, µ′ =

{µ′1, · · · , µ′N} is the set of target policies and θi−Q is the
parameter of the target Q network for agent i.

Then, the policy for agent i, which is parameterized by θiµ,
is trained by deterministic policy gradient to maximize the
objective J(θiµ) = E [Ri], and the gradient of the objective
is given by

∇θiµJ(µi) = Ex,a∼D

[
∇θiµµ

i(oi)∇aiQiµ(x,−→a ))|ai=µi(oi)
]

2.4 Dropout
Dropout is a successful neural network technique. For a
given neural network, constituting units (or nodes) in the
neural network are randomly dropped out with probability
p independently in the training phase to avoid co-adaptation
among the units in the neural network (Srivastava et al.
2014). In the test phase, on the other hand, all the units are
included but the outgoing weights of those units affected by
dropout are multiplied by 1 − p. There is a good interpre-
tation of dropout: efficient model averaging over randomly
generated neural networks in training. For a neural network
with N units, dropout samples the network to be trained
from 2N differently-thinned networks which share the pa-
rameter in the training phase due to independent dropping
out of the N units. Scaling the weights of the units at the
test phase can be regarded as averaging over the ensemble of
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Figure 1: N = 3: All candidates for agent 1’s Q-network

subnetworks. It is shown that in the particular case of a sin-
gle logistic function, dropout corresponds to geometric aver-
aging (Baldi and Sadowski 2013). Thus, dropout efficiently
combines the exponentially-many different neural networks
as one network and can also be regarded as a kind of ensem-
ble learning (Hara, Saitoh, and Shouno 2016).

3 Methodology
3.1 Decentralized Control with Communication
In this subsection, we consider the direct communication
framework in (Goldman and Zilberstein 2004) for DCC.
This framework can be modeled by adding messages to
POSG. Each agent exchanges messages before action, and
chooses action based on its own observation and the received
messages. Hence, the policy of agent i is given by πi : Ωi ×
Mi × Ai → [0, 1], whereMi =

∏
j 6=iM

j
i andMj

i is the
space of received messages from agent j to agent i. We de-
note agent i’s received message from agent j asmi,j ∈Mj

i ,
and mi = (mi,1, · · · ,mi,i−1,mi,i+1, · · · ,mi,N ) is the col-
lection of the received messages at agent i. For the learning
engine at each agent, we use the Double Deep Q-Network
(DDQN) which alleviates the overestimation problem of Q-
learning (Van Hasselt, Guez, and Silver 2016). In this case,
the Q-function of agent i parameterized by the neural net-
work θi is given byQi(oi,mi, ai; θi) = E[Ri|oi,mi, ai; θi].
Then, the Q-function of agent i is updated by minimizing the
loss function

L(θi) = E(oi,mi,ai,ri,o′i,m′i)∼Di
[
(yi −Qi(oi,mi, ai; θi))2

]
(3)

where yi = ri + γQi(o′
i
,m′

i
, argmaxa′Q

i(o′
i
,m′

i
, a′; θi); θi−).

We will refer to this scheme as simple DCC.
The problem of simple DCC is that the input dimension of

theQ neural network at each agent linearly increases and the
size of the input state space increases exponentially, as the

number of agents increases. Thus, the number of required
samples for learning increases, and this decreases the speed
of learning. Another issue of simple DCC is that the portion
of each agent’s own observation space in the input space of
the Q-function decreases as the number of agents increases.
Typically, the own observation of each agent is most impor-
tant. Hence, the importance of each agent’s own observation
is not properly weighted in simple DCC.

3.2 Message-Dropout
To address the aforementioned issues of simple DCC, we
propose a new neural network technique, named message-
dropout, which can be applied to decentralized control with
communication of messages.

Message-dropout drops out the received other agents’
messages at the input of the Q-network at each agent in-
dependently in the training phase. That is, all units cor-
responding to the message from one dropped other agent
are dropped out simultaneously in a blockwise fashion with
probability p and this blockwise dropout is independently
performed across all input unit blocks corresponding to all
other agents’ messages. On the other hand, the outgoing
weights of those input units on which dropout is applied are
multiplied by 1 − p, when the policy generates actual ac-
tion. Note that dropout is not applied to the input units cor-
responding to each agent’s own observation. To illustrate,
let us consider agent 1 in an environment with total three
agents, as shown in Fig. 1. The Q-network of agent 1 has
three input blocks: one for own observation and two for the
messages from two other agents. By applying the proposed
message dropout, as shown in Fig. 1, we have the four pos-
sible configurations for the input of the Q-network of agent
1:

(o1,m1,2,m1,3), (o1,m1,2,
−→
03), (o1,

−→
02,m

1,3), (o1,
−→
02,
−→
03)

where
−→
0j ∈ R|M

j
i | with all zero elements represents the

dropped-out input units.
Now, we explain the Q-learning process for DCC with

message-dropout (DCC-MD). Consider the learning at agent
i. Agent i stores the transition (oi,mi, ai, ri, o′

i
,m′

i
) into

its replay memory Di. To train the Q-function, agent i sam-
ples a random mini-batch of transitions from Di, denoted
{(oij ,mi

j , a
i
j , r

i
j , o

i
j+1,m

i
j+1), j ∈ J i}. Message-dropout is

performed independently for each j ∈ J i and the message-
dropout performed observation and its transition are given
by

m̃j
i = (bj,1m

i,1
j , · · · , bj,i−1mi,i−1

j , bj,i+1m
i,i+1
j , · · · , bj,Nmi,N

j )

m̃i
j+1 = (bj,1m

i,1
j+1, · · · , bj,i−1m

i,i−1
j+1 , bj,i+1m

i,i+1
j+1 , · · · , bj,Nm

i,N
j+1)

where the scalar value bj,k ∼ Bernoulli(p). Note that the
same binary mask is used to define m̃i

j and m̃i
j+1. Then,

the Q-function is updated by minimizing the loss

L(θi) = E(oij ,m
i
j ,a

i
j ,r

i
j ,o

i
j+1,m

i
j+1)∼Di

[
(yij −Qi(oij , m̃j

−i, aij ; θ
i))2
]
(4)

where yij = rij + γQi(oij+1, ˜mj+1
i, argmaxaiQ

i
exec(o

i
j+1,m

i
j+1, a

i; θi); θi−)

Here, Qiexec(o
i,mi, ai; θi) is the Q-function parameterized

by the neural network whose outgoing weights of mi are



Algorithm 1 DCC with Message-Dropout (DCC-MD)

Initialize θ1, · · · , θN and θ−1
, · · · , θ−N .

for episode = 1, 2, · · · do
Initialize state s1.
for t < T and st 6= terminal do

Each agent i observes oit and sends mi
t

for each agent i = 1, 2, · · · , N do
Receive messages mi

t.
With probability ε select a random action ait
otherwise select the action ait from (5).

end for
Execute −→a and each agent i receives rit and oit+1.
Each agent sends the message to other agents.
for each agent i = 1, 2, · · · , N do

Store transition (oit,m
i
t, a

i
t, r

i
t, o

i
t+1,m

i
t+1) in Di

Sample {(oij ,mi
j , a

i
j , r

i
j , o

i
j+1,m

i
j+1), j ∈ J i}

from Di
Generate a binary mask and obtain m̃i

j and m̃i
j+1

Update θi by minimizing the loss function (4)
end for
Update the target network

end for
end for

multiplied by 1 − p. Note that we use Qiexec to predict the
next action when evaluating the target Q-value yij . Finally,
the policy πi is given by

πi = argmaxaiQ
i
exec(o

i,mi, ai; θi). (5)

Interpretation In the training phase with message-
dropout, agent i drops out some of other agents’ messages
in mi, while keeping own observation. As a result, the in-
put space of the Q-network of agent i is projected onto a
different subspace (of the original full input space) that al-
ways includes own observation space at each training time
since the dropout masks change at each training time. The
input spaces of the four Q-networks in the example of Fig.
1 are Ω1 × M2

1 × M3
1, Ω1 × M2

1, Ω1 × M3
1, Ω1 (all

include agent’s own observation Ωi). In the general case
of N agents, message-dropout samples the network to be
trained from 2N−1 differently-thinned networks which al-
ways include the agent’s own observation. Note that the Q-
network whose all received messages are retained is the Q-
network of simple DCC and the Q-network whose all obser-
vations from other agents are dropped is the Q-network for
fully decentralized DDQN without communication. Thus,
2N−1 differently-thinned networks include the Q-networks
of simple DCC and fully decentralized DDQN. Message-
dropping out in the training phase and multiplying the out-
going weights of mi by 1 − p in the test phase yields an
approximate averaging over the ensemble of those networks.
Note that simple DCC and fully decentralized DDQN are the
special cases of the dropout rate p = 0 and p = 1, respec-
tively. Thus, for 0 < p < 1, the proposed scheme realizes
some network between these two extremes.

3.3 MADDPG-MD
Message-dropout can also be applied to the framework of
centralized training with decentralized execution, particu-
larly to the setting in which each agent uses additional infor-
mation from other agents during training as the input of the
network. For example, in MADDPG, the centralized critic
Qiµ(x,−→a ) takes all agents’ observations and actions as in-
put, and hence the input space of the centralized critic for
each agent increases exponentially as the number of agents
increases. The proposed technique, message-dropout, is ap-
plied to the training phase of the centralized critic to ad-
dress the aforementioned problem. The centralized critic
with message-dropout applied is trained to minimize the loss
function:

L(θiQ) = Ex̃,a,x̃′∼D
[
(yi −Qiµ(x̃,−→a ; θiQ))2

]
, (6)

where yi = ri + γQiµ′ (x̃′,
−→
a′ ; θi−Q )|a′j=µ′j(o′j)

and x̃ = (oi, õ−i). Note that õ−i =
(b1o

1, · · · , bi−1oi−1, bi+1o
i+1, · · · , bNoN ), where bi

∼ Bernoulli(p), and the same binary mask is used to obtain
x̃ and x̃′ as in DCC-MD. Then, the policy for agent i is
trained by maximizing the objective J(θiµ) = E [Ri], and
the gradient of the objective can be written as

∇θiµJ(µi) = Ex̃,a∼D

[
∇θiµµ

i(oi)∇aiQiµ(x̃,−→a ))|ai=µi(oi)
]
.

We refer to MADDPG with message-dropout applied as
MADDPG-MD.

4 Experiment
In this section, we provide some numerical results to evalu-
ate the proposed algorithm in the aforementioned two sce-
narios for MADRL with information exchange. First, we
compare DCC-MD with simple DCC and Fully Decentral-
ized Control (FDC) in two environments of pursuit and co-
operative navigation. Second, we compare MADDPG-MD
with MADDPG and independent DDPG (simply DDPG) in
the environment of waterworld. Then, we provide in-depth
ablation studies to understand the behavior of message-
dropout depending on various parameters. Finally, we in-
vestigate DCC-MD in unstable environments in which some
links of communication between agents can be broken in the
execution phase

Although some compression may be applied, for simplic-
ity we here assume that each agent’s message is its observa-
tion itself, which is shown to be optimal when the commu-
nication cost is ignored in the framework of DCC (Goldman
and Zilberstein 2004). Hence, Mj

i = Ωj for all agent i,
and the policy function becomes πi :

−→
Ω × Ai → [0, 1],

where
−→
Ω = (Ω1, · · · ,ΩN ). (A brief study on message-

dropout with message generation based on auto-encoder ap-
plied to raw observation is given in the supplementary file of
this paper. It is seen that similar performance improvement
is achieved by message-dropout in the case of compressed
message. Hence, message-dropout can be applied on top of
message compression for MADRL with message communi-
cation.)
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Figure 2: Considered environments: (a) Pursuit, (b) Cooper-
ative navigation, and (c) Waterworld

4.1 Environment
Pursuit The pursuit game is a standard task for multi-
agent systems (Vidal et al. 2002). The environment is made
up of a two-dimensional grid and consists ofN pursuers and
M evaders. The goal of the game is to capture all evaders
as fast as possible by training the agents (i.e., pursuers). Ini-
tially, all the evaders are at the center of the two-dimensional
grid, and each evader randomly and independently chooses
one of five actions at each time step: move North, East,
West, South, or Stay. (Each evader stays if there exists a pur-
suer or a map boundary at the position where it is going to
move.) Each pursuer is initially located at a random posi-
tion of the map and has five possible actions: move North,
East, West, South or Stay. When the four sides of an evader
are surrounded by pursuers or map boundaries, the evader
is removed and the pursuers who capture the evader receive
R+ reward. All pursuers receive −R−1 reward for each time
step and −R−2 reward if the pursuer hits the map bound-
ary (the latter negative reward is to promote exploration).
An episode ends when all the evaders are captured or T
time steps elapse. As in (Gupta, Egorov, and Kochenderfer
2017), each pursuer observes its surrounding which consists
of map boundary, evader(s), or other pursuer(s). We assume
that each pursuer can observe up to D distances in four di-
rections. Then, the observed information of each pursuer
can be represent by a 3 × (2D + 1) × (2D + 1) obser-
vation window (which is the observation of each agent): a
(2D + 1) × (2D + 1) window detecting other pursuer(s),
a (2D + 1) × (2D + 1) window detecting evader(s), and
a (2D + 1) × (2D + 1) window detecting the map bound-
ary. For the game of pursuit, we set R+ = 5, R−1 = 0.05,
R−2 = 0.5, T = 500, M = 2 and D = 3 and simulate two
cases: N = 6 and N = 8. The map size of the two cases are
15× 15 and 17× 17 respectively.

Cooperative navigation Cooperative navigation, which
was introduced in (Mordatch and Abbeel 2017), consists of
N agents and L landmarks. The goal of this environment
is to occupy all of the landmarks while avoiding collisions
among agents. The observation of each agent is the con-
catenation of its position and velocity, the locations of land-
marks, and the locations of other agents. Since we consider
partially observable setting, we assume that each agent ob-
serves the locations of other agents only if the distance is
less than D. Each agent receives a negative reward −R−1 as
the negative of the minimun of the distances from the agent
to the L landmarks and receives a negative reward −R−2 if

the collision among agents occurs. In this environment, we
set R−2 = 2, and simulate two cases: N = 8, L = 8 and
N = 10, L = 10.

Waterworld Waterworld is an extended environment of
pursuit to a continuous domain (Gupta, Egorov, and Kochen-
derfer 2017). The environment is made up of a two-
dimensional space and consists of N pursuers and M food
targets, L poison targets, and one obstacle. The goal of the
environment is to capture as many food targets as possible
within a given episode of T time steps while avoiding poi-
son targets. In order to make the game more cooperative,
at least K agents need to cooperate to catch a food target.
Each agent takes two-dimensional physical actions to the en-
vironment and has observation which consists of its position
and information from 25 range-limited sensors of the agent.
The sensors of each agent are used to offer the distances
and velocities of other agents, food targets, and poison tar-
gets. The agents receive a reward R+

1 when they capture a
food target and are penalized by getting reward −R−1 when
they encounter a poison target. To promote exploration, a
reward R+

2 is given to an agent if the agent touches a food
target. They also receive an action penalty reward defined
as the square norm of the action. In this environment, we
set R+

1 = 10, R+
2 = 0.01, R−1 = 0.1, and T = 500, and

simulate two cases: N = 8,K = 4 and N = 10,K = 5.
The three environments are briefly illustrated in Fig. 2.

4.2 Model Architecture
Instead of using the concatenation of the agent’s own ob-
servation and the received messages as the input of the Q-
function, we use an architecture for the Q-function that em-
phasizes the agent’s own observation. The proposed neural
network architecture for the Q-function for agent i is repre-
sented by

Qi(oi, ai,mi; θi) = h(f(oi, ai), g(mi)) (7)

where f and g are the neural networks that extracts fea-
tures of own observation and the received messages, re-
spectively, and h is the neural network that produces the
expected return by using the output of f and g. In MAD-
DPG, we replace mi with the concatenation of o−i and
a−i, where o−i = (o1, · · · , oi−1, oi+1, · · · , oN ) and a−i =
(a1, · · · , ai−1, ai+1, · · · , aN ). Note that f , g and h are de-
pendent on the task since the input and action dimensions of
each task are different. The detailed structures of f , g and h
are explained in supplementary material in a separate file.

4.3 Result
Pursuit For the pursuit game, we compared DCC-MD
with simple DCC and FDC by varying the dropout rate as
p = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0]. Note that DCC-MD with
p = 0 corresponds to simple DCC, whereas DCC-MD with
p = 1 corresponds to FDC. The performance of each algo-
rithm was measured by the number of evader catches in 500
time steps after training. Fig. 3a and Fig. 3b show the num-
ber of evader catches (in 500 time steps after training) aver-
aged over 1000 episodes and 7 random seeds, with respect
to the drop rate. It is seen that the performance improves as
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(d) N = 10
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(f) N = 10

Figure 3: Results - (a)/(b): Pursuit - performance after training as a function of the dropout rate, (c)/(d): cooperative navigation
- learning curve, and (e)/(f): waterworld - learning curve)

the dropout rate increases initially and then the performance
deteriorates as the dropout rate further increases after a cer-
tain point. In the considered tasks, the best dropout rate is
around [0.2, 0.3]. It is seen that DCC-MD with proper drop
rate significantly outperforms both simple DCC and FDC.
Note that in the case that the number of agents is N = 8,
simple DCC has even worse performance than FDC. This is
because simple DCC does not learn properly due to the large
state space for large N .

Cooperative navigation In this environment, we com-
pared DCC-MD with the dropout rate 0.2 and 0.5 with sim-
ple DCC and FDC. Figs. 3c and 3d show the learning curves
for two cases (N = 8, L = 8) and (N = 10, L = 10),
respectively. The y-axis is the sum of all agents’ rewards av-
eraged over 7 random seeds, and the x-axis is time step. It
is seen that DCC-MD with the dropout rate 0.2 and 0.5 out-
performs simple DCC and FDC.

Waterworld In the waterworld environment, we now con-
sidered (independent) DDPG, vanilla MADDPG, MAD-
DPG, and MADDPG-MD with the drop rate 0.2 and 0.5, and
compared their performances. Here, MADDPG is the modi-
fied version of vanilla MADDPG to which the proposed net-
work architecture described in Section 4.2 is applied. Figs.
3e and 3f show the learning curves of the four algorithms
for two cases (N = 8,K = 4) and (N = 10,K = 5), re-
spectively. The y-axis is the number of food target catches
averaged over random seeds, and the x-axis is time step. It
is seen that MADDPG-MD outperforms both (independent)
DDPG and MADDPG. Note that fully decentralized (inde-
pendent) DDPG has the fastest learning speed at the initial
stage due to its small input dimension, but its performance
degrades as time step goes because of no cooperation. It is
noteworthy that MADDPG-MD almost achieves the initial
learning speed of (independent) DDPG while it yields far
better performance at the steady state.

4.4 Ablation Studies

With the verification of the performance gain of the
message-dropout technique, we performed in-depth ablation
studies regarding the technique with respect to the four key
aspects of the technique: 1) the dropout rate, 2) block-wise
dropout versus element-wise dropout, 3) retaining agent’s
own observation without dropout, and 4) the model archi-
tecture.

Dropout rate As mentioned in Section 2, we can view
that message-dropout generates an ensemble of 2N−1

differently-thinned networks and averages these thinned net-
works. From this perspective, the dropout rate determines
the distribution of the thinned networks. For example, all
the 2N−1 networks are uniformly used to train the ensem-
ble Q-network if the dropout rate is 0.5. As the dropout rate
increases, the overall input space shrinks in effect and the
portion of the own observation space becomes large in the
overall input space, since we apply message-dropout only to
the message inputs from other agents. Hence, it is expected
that the learning speed increases especially for large N as
the dropout rate increases. Figs. 4a and 4b show the learn-
ing performance of the algorithms in the training phase. The
x-axis is the current time step, and the y-axis is the num-
ber of evader catches in 500 time steps. As expected, it is
seen that the learning speed increases as the dropout rate in-
creases. This behavior is clearly seen in Fig. 4b, where the
number of agents isN = 8. Note that message-dropout with
proper drop rate achieves gain in both the learning speed
and the steady-state performance. Figs. 3a and 3b show the
corresponding performance in the execution phase after the
training. It seems that the drop rate of 0.2 to 0.5 yields sim-
ilar performance and the performance is not so sensitive to
the drop rate within this range.

Block-wise dropout versus element-wise dropout We
compared message-dropout with standard-dropout which
drops the messages of other agents out in an element-
wise manner while retaining each agent’s own observation.
Fig. 5a shows that message-dropout yields better perfor-
mance than the standard element-wise dropout. The differ-
ence between message-dropout and standard-dropout is the
projected subspaces of the input space. Message-dropout
projects the input space onto 2N−1 subspaces which always
include own observation space, whereas standard-dropout
projects the input space onto 2(N−1)|M

j
i | subspaces which

contain the projected subspaces by message-dropout.

Retaining agent’s own observation without dropout
We compared message-dropout with full message-dropout
which applies message-dropout to each agent’s own ob-
servation as well as the messages of other agents. Fig. 5a
shows that the full message-dropout increases the training
time, similarly to the known fact that in general dropout in-
creases the training time (Srivastava et al. 2014). Whereas
full message-dropout yields slower training than simple
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Figure 4: DCC-MD with respect to dropout rate in pursuit
(MD-p: DCC-MD with dropout rate p)
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Figure 5: SD-p: standard element-wise dropout with drop
rate p, Full MD-p and Full SD-p: dropout includes agent’s
own observation, Concat-MD-p : DCC-MD-p with the con-
catenation of own observation and other agents’ messages as
input

DCC, message-dropout makes training faster than simple
DCC. Note that standard elementwise dropout without drop-
ping agent’s own observation also yields faster training than
simple DCC, but full standard elementwise dropout fails to
train. Hence, it is important to retain each agent’s own ob-
servation without dropping out when dropout is applied to
MADRL with information exchange.

Model architecture We used the neural network architec-
ture of Q-function that is described in Section 4.2 for all en-
vironments. In pursuit withN = 8 and waterworld, learning
failed with the simple model architecture that uses the con-
catenation of each agent’s own observation and the received
messages as input. Hence, the proposed model architecture
is advantageous when the input space of Q-function is large.
Note that the proposed model architecture has more layers
for agent’s own observation than those for the received mes-
sages from other agents as shown in Fig. 5b, and hence the
feature for more important agent’s own observation is well
extracted. An interested reader is referred to the supplemen-
tary file.

4.5 Test in The Unstable Environment
Up to now, we have assumed that communication among
agents is stable without errors in both training and execution
phases. Now, we consider the situation in which the com-
munication is stable in the training phase but unstable in the
actual execution phase. Such situations occur when the train-
ing is done in a controlled environment but the execution is

Figure 6: (Half) : the performance of each method in the case
where the half of connection between agents are broken in
pursuit, (All) : The performance of each method in the case
where all connection between agents are broken in pursuit

performed in an uncontrolled environment with real deploy-
ment. We considered two communication-unstable cases:
case 1 is the case that randomly chosen half of the connec-
tions among agents are broken, and case 2 is the case that
all connections among agents is broken. When the commu-
nication between two agents is broken, we use a zero vector
instead of the message received from each other. Note that
the performance of FDC does not change since it requires
no communication.

Fig. 6 shows the average number of evader catches in the
two considered cases in pursuit. It is seen that DCC-MD out-
performs both simple DCC and FDC when the communi-
cation link is broken but not all links are broken. It means
that message-dropout in the training phase makes the learn-
ing robust against communication errors and can still out-
perform FDC even with other agents’ messages coming less
frequently. On the other hand, when the communication link
is too unstable, DCC-MD cannot recover this communica-
tion loss (but still better than simple DCC), but FDC is bet-
ter in this case. Hence, the message-dropout in the training
phase can be useful in the situation in which communication
among agents is erroneous with a certain probability in the
real execution phase.

5 Related Work
Recent works in MADRL focus on how to improve the
performance compared to FDC composed of independently
learning agents. To harness the benefit from other agents,
(Foerster et al. 2016) proposed DIAL, which learns the com-
munication protocol between agents by passing gradients
from agent to agent. (Foerster et al. 2018) proposed the
multi-agent actor-critic method called COMA, which uses a
centralized critic to train decentralized actors and a counter-
factual baseline to address the multi-agent credit assignment
problem.

In most MADRL algorithms such as those mentioned
above, the input space of the network (policy, critic, etc.)
grows exponentially with the number of agents. Thus, we
expect that message-dropout can be combined with those
algorithms to yield better performance. To handle the in-



creased dimension in MADRL, (Yang et al. 2018) proposed
mean field reinforcement learning in which the Q-function is
factorized by using the local action interaction and approx-
imated by using the mean field theory. Whereas mean field
reinforcement learning handles the action space within the
input space consisting of action and observation, message-
dropout can handle not only the action space but also the
observation space.

6 Conclusion
In this paper, we have proposed the message-dropout tech-
nique for MADRL. The proposed message-dropout tech-
nique applied to DQN effectively handles the increased
input dimension in MADRL with information exchange,
where each agent uses the information of other agents to
train the policy. We have provided ablation studies on the
performance of message-dropout with respect to various
aspects of the technique. The studies show that message-
dropout with proper dropout rates significantly improves
performance in terms of the training speed and the steady-
state performance. Furthermore, in the scenario of decentral-
ized control with communication, message-dropout makes
learning robust against communication errors in the execu-
tion phase. Although we assume that the communication be-
tween agents is fully allowed, message-dropout can be ap-
plied to the scenario in which communication between lim-
ited pairs of agents is available too.
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