This report is a supplementary document to the paper "Filter-and-forward relay design for MIMOOFDM systems," by Donggun Kim, Youngchul Sung, and Jihoon Chung, accepted to IEEE Transactions on Communications.

Proof of Lemma 1

Note that Lemma 1 is modified from [R.1]. To prove Lemma 1, we start with verifying the fact that a block circulant matrix is a polynomial in the permutation matrix \mathbf{E}, where a polynomial in \mathbf{E} is defined as

$$
\begin{equation*}
\mathbf{H}_{c}=\left(\mathbf{I}_{N} \otimes \mathbf{H}_{0}\right)+\left(\mathbf{E} \otimes \mathbf{H}_{1}\right)+\left(\mathbf{E}^{2} \otimes \mathbf{H}_{2}\right)+\cdots+\left(\mathbf{E}^{N-1} \otimes \mathbf{H}_{N-1}\right) \tag{1}
\end{equation*}
$$

where $\mathbf{E}=\left[\mathbf{e}_{N} \mathbf{e}_{1} \mathbf{e}_{2} \cdots \mathbf{e}_{N-1}\right]$ and \mathbf{e}_{i} is the i-th column of the $N \times N$ identity matrix \mathbf{I}_{N}. Using this, we can rewrite $\boldsymbol{\Lambda}_{b}$ as

$$
\begin{align*}
& \boldsymbol{\Lambda}_{b}=\left(\mathbf{W}_{N}^{H} \otimes \mathbf{I}_{N_{r}}\right) \mathbf{H}_{c}\left(\mathbf{W}_{N} \otimes \mathbf{I}_{N_{t}}\right) \tag{2}\\
&=\left(\mathbf{W}_{N}^{H} \otimes \mathbf{I}_{N_{r}}\right)\left(\left(\mathbf{I}_{N} \otimes \mathbf{H}_{0}\right)+\left(\mathbf{E} \otimes \mathbf{H}_{1}\right)+\cdots+\left(\mathbf{E}^{N-1} \otimes \mathbf{H}_{N-1}\right)\right)\left(\mathbf{W}_{N} \otimes \mathbf{I}_{N_{t}}\right) \tag{3}\\
&=\left(\mathbf{W}_{N}^{H} \otimes \mathbf{I}_{N_{r}}\right)\left(\mathbf{I}_{N} \otimes \mathbf{H}_{0}\right)\left(\mathbf{W}_{N} \otimes \mathbf{I}_{N_{t}}\right)+\left(\mathbf{W}_{N}^{H} \otimes \mathbf{I}_{N_{r}}\right)\left(\mathbf{E} \otimes \mathbf{H}_{1}\right)\left(\mathbf{W}_{N} \otimes \mathbf{I}_{N_{t}}\right)+\cdots \\
& \quad+\left(\mathbf{W}_{N}^{H} \otimes \mathbf{I}_{N_{r}}\right)\left(\mathbf{E}^{N-1} \otimes \mathbf{H}_{N-1}\right)\left(\mathbf{W}_{N} \otimes \mathbf{I}_{N_{t}}\right) \tag{4}\\
& \stackrel{(a)}{=}\left(\mathbf{W}_{N}^{H} \otimes \mathbf{H}_{0}\right)\left(\mathbf{W}_{N} \otimes \mathbf{I}_{N_{t}}\right)+\cdots+\left(\mathbf{W}_{N}^{H} \mathbf{E}^{N-1} \otimes \mathbf{H}_{1}\right)\left(\mathbf{W}_{N} \otimes \mathbf{I}_{N_{t}}\right) \tag{5}\\
& \stackrel{(b)}{=}\left(\mathbf{W}_{N}^{H} \mathbf{W}_{N} \otimes \mathbf{H}_{0}\right)+\cdots+\left(\mathbf{W}_{N}^{H} \mathbf{E}^{N-1} \mathbf{W}_{N} \otimes \mathbf{H}_{N-1}\right) \tag{6}
\end{align*}
$$

where (a) and (b) follow from the Kronecker product identity that $(\mathbf{A} \otimes \mathbf{C})(\mathbf{B} \otimes \mathbf{D})=(\mathbf{A B}) \otimes$ $(\mathbf{C D})$. Note that \mathbf{E}^{k} is a circulant matrix for $k \in \mathbb{N}$ and this can be diagonalized by \mathbf{W}_{N}^{H} and \mathbf{W}_{N}. Therefore, $\boldsymbol{\Lambda}_{b}$ is a block diagonal matrix. Let us first consider $\mathbf{W}_{N}^{H} \mathbf{E} \mathbf{W}_{N}$. The first row of \mathbf{E} is $\mathbf{e}_{2}^{T}=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & \cdots & 0\end{array}\right]$. Then, \mathbf{E} can be diagonalized by the circulant matrix theorem and its diagonal elements is given as

$$
\begin{equation*}
\sqrt{N} \mathbf{W}_{N}^{H} \mathbf{e}_{2}=\left[1 \omega_{N}^{-1} \omega_{N}^{-2} \cdots \omega_{N}^{-(N-1)}\right]^{T} \tag{7}
\end{equation*}
$$

where $\omega_{N}=e^{\iota \frac{2 \pi}{N}}$. Therefore, we obtain

$$
\begin{equation*}
\mathbf{W}_{N}^{H} \mathbf{E} \mathbf{W}_{N}=\mathbf{D}_{E}=\operatorname{diag}\left\{\sqrt{N} \mathbf{W}_{N}^{H} \mathbf{e}_{2}\right\}=\operatorname{diag}\left\{\left[1 \omega_{N}^{-1} \omega_{N}^{-2} \cdots \omega_{N}^{-(N-1)}\right]^{T}\right\} \tag{8}
\end{equation*}
$$

Next, let us consider $\mathbf{W}_{N}^{H} \mathbf{E}^{2} \mathbf{W}_{N}$. The first row of \mathbf{E}^{2} is $\mathbf{e}_{3}^{T}=\left[\begin{array}{llllll}0 & 0 & 1 & 0 & \cdots & 0\end{array}\right]$ because \mathbf{E}^{2} is a column-shifted version of $\mathbf{E} . \mathbf{E}^{2}$ can also be diagonalized by the circulant matrix theorem and its diagonal elements is given as

$$
\begin{equation*}
\sqrt{N} \mathbf{W}_{N}^{H} \mathbf{e}_{3}=\left[1 \omega_{N}^{-2} \omega_{N}^{-4} \cdots \omega_{N}^{-2(N-1)}\right]^{T} \tag{9}
\end{equation*}
$$

Therefore, we obtain $\mathbf{W}_{N}^{H} \mathbf{E}^{2} \mathbf{W}_{N}=\mathbf{D}_{E}^{2}$. In a similar way, we can generalize the diagonalization of permutation matrices as

$$
\begin{equation*}
\mathbf{W}_{N}^{H} \mathbf{E}^{n} \mathbf{W}_{N}=\mathbf{D}_{E}^{n} . \tag{10}
\end{equation*}
$$

From this, the equation (6) can be rewritten as

$$
\begin{align*}
\boldsymbol{\Lambda}_{b} & =\left(\mathbf{W}_{N}^{H} \mathbf{W}_{N} \otimes \mathbf{H}_{0}\right)+\cdots+\left(\mathbf{W}_{N}^{H} \mathbf{E}^{N-1} \mathbf{W}_{N} \otimes \mathbf{H}_{N-1}\right) \\
& =\sum_{n=0}^{N-1} \mathbf{W}_{N}^{H} \mathbf{E}^{n} \mathbf{W}_{N} \otimes \mathbf{H}_{n} \tag{11}\\
& =\sum_{n=0}^{N-1} \mathbf{D}_{E}^{n} \otimes \mathbf{H}_{n} \tag{12}
\end{align*}
$$

and the i-th diagonal block of Λ_{b} is given by

$$
\sum_{n=0}^{N-1}\left(\mathbf{D}_{E}^{n}\right)_{i i} \mathbf{H}_{n}=\sum_{n=0}^{N-1} \mathbf{H}_{n} \omega_{N}^{-n(i-1)}=\sum_{n=0}^{N-1} \mathbf{H}_{n} e^{-\iota 2 \pi \frac{n(i-1)}{N}}
$$

Let us define the i-th row of DFT matrix $\sqrt{N} \mathbf{W}_{N}^{H}$ as $\sqrt{N} \mathbf{w}_{N-i}^{H}=\left[1 \omega_{N}^{-(i-1)} \omega_{N}^{-2(i-1)} \cdots \omega_{N}^{-(N-1)(i-1)}\right]$ and $\mathbf{K}=\left[\mathbf{H}_{0} \mathbf{H}_{1} \cdots \mathbf{H}_{N-1}\right]$. Then, we can rewrite the i-th diagonal block as $\mathbf{K}\left(\sqrt{N} \mathbf{w}_{N-i}^{H} \otimes \mathbf{I}_{N_{t}}\right)^{T}$. If we replace i with $-(k-N)$, we obtain the desired result.
[R.1] P. J. Davis, Circulant Matrices, 2nd ed. New York: Chelsea, 1994.

