
An Extended Least Difference Greedy Clique-Cover
Algorithm for Index Coding
Sangwoon Kwak, Jungho So and Youngchul Sung†

Dept. of Electrical Engineering
KAIST

Daejeon, Korea, 305-701
Email: {sw.kwak@, jhso@ and ysung@ee.}kaist.ac.kr

Abstract—In this paper, linear binary index coding is con-
sidered. It is shown that the minimum clique-cover heuristic
algorithm can provide an efficient way to solving linear binary
index coding problems. Based on the least difference greedy
(LDG) clique-cover algorithm, an existing minimum clique-cover
algorithm for index coding, proposed by Birk and Kol [1], [2], we
develop an extended LDG algorithm by considering a transpose
index coding model and cycle detection in the side information
graph. Numerical results show that the proposed algorithm
considerably outperforms the conventional LDG algorithm in
terms of the number of transmissions.

I. INTRODUCTION
Motivated by Birk and Kol [1], [2], coding-on-demand by

an informed-source over a broadcast channel, also known as
index coding, has attracted much attention from the research
community in recent years [3]. The index coding problem [4]
that we consider in this paper is described as follows:
Definition 1 (The considered index coding problem): A

server communicates with n receivers R = {r1, r2, · · · , rn}
through an errorless broadcast channel, and the server holds
a set of n binary variables X = {x1, x2, · · · , xn} ∈ {0, 1}n.
Each receiver ri requires xi and has prior side information
about the data X denoted by X [N(i)], where N(i) is the
index set of side information at ri. The goal of index coding
is to minimize the number of transmissions for given side
information index sets N(1), N(2), · · · , N(n).
Although the index coding problem was first introduced for

satellite networks, the index coding technique can be applied to
numerous applications including distributed storage systems,
which have become important in recent years with the advent
of social media. In the repair process of distributed storage
systems with local hierarchy [5], [6], it is a challenging and
important problem to reduce the number of global transmission
between different local areas. Assuming the local transmission
is cost-free, the repair problem of multiple failures can be
regarded as an index coding problem. Thus, developing an
efficient index coding algorithm is important to practical
distributed storage systems in real world. In this paper, we
investigate the LDG algorithm [1], [2], an efficient linear index
coding algorithm, and propose an extended LDG algorithm

† This research was supported by Basic Science Research Program through
the National Research Foundation of Korea(NRF) funded by the Ministry of
Education(2013R1A1A2A10060852).

by developing two extensions: column merging heuristic and
cycle detection.

A. Related work
In [4], it is shown that an index coding problem can

be represented by a unique directed graph called a side
information graph G(V,E). Using the side information graph,
Bar-Yoseef et al. completely characterized the optimal length
of a linear index code for a given index coding problem [4].
For a given index coding problem represented by a directed
graph G, there is a minimum code length for linear index
coding that can be expressed by a graph functional. Although
the authors in [7] showed that nonlinear index coding can
outperform linear index coding for some problems, there are
many cases in which still linear index coding is optimal [4].
There exist several algorithms for linear index code design, and
some of these algorithms will be explained briefly in Section
II-A.

II. BACKGROUND
An index coding problem described in Definition 1 can be

represented by a directed graph G(V,E) as follows [4]:
Definition 2 (Side Information Graph): [4] The side infor-

mation graph G(V,E) with a vertex set V and an edge set E
is defined as follows:
1) Construct n vertices. The i-th vertex (node) represents the

i-th receiver ri and the corresponding requested block xi

simultaneously.
2) Construct a directed edge (u, v) if and only if ri knows

xj , i.e., j ∈ N(i).

Bar-Yossef et al. obtained the minimum length for a linear
index code represented by a directed graph G(V,E) based on
the concept of fitting matrices for given G(V,E) defined as
follows [4]:
Definition 3 (Fitting Matrices): For a given directed graph

G we say that a binary n × n matrix F = (fij) fits G if the
following conditions hold for all i and j:
1) fii = 1,
2) fij = 0 whenever (i, j) is not an edge of G.

Then, the minimum length for a linear index code for
G(V,E) is given by a graph functional minrk2(G) �

2014 IEEE International Symposium on Information Theory

978-1-4799-5186-4/14/$31.00 ©2014 IEEE 501

1

2

3 4

5

G(V,E)

F1 =

⎡
⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 0 1 1

⎤
⎥⎥⎥⎦

F2 =

⎡
⎢⎢⎢⎣

1 0 0 1 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 1 1

⎤
⎥⎥⎥⎦

Fig. 1. The side information graph and fitting matrices for the Example 1

min{rank2(F) | F fits G} [4], and a matrix fitting G whose
rank is minrk2(G) provides an optimal linear code for the
index coding problem represented by the directed graph G.
(For a fitting matrix F for G, E(X) = [y1, · · · , yrank(F)]
given by ⎡

⎢⎣
y1
...

yrank(F)

⎤
⎥⎦ =

⎡
⎢⎣

b1

...
brank(F)

⎤
⎥⎦
⎡
⎢⎣

x1

...
xn

⎤
⎥⎦ (1)

provides a linear index code for G, where b1, · · · ,brank(F)

are a set of row vectors that spans the row space of F [4].)
To illustrate this, consider the following example.
Example 1: A server wants to broadcast an input X ∈

{0, 1}5 and five receivers r1, r2, · · · , and r5 request
x1, x2, · · · , and x5, respectively. The side information index
sets are given by

N(1) = {2, 3, 4}, N(2) = {1, 3}, N(3) = {4},
N(4) = {2}, N(5) = {4}

(2)

Then, the side information graph G is constructed as shown
in Fig. 1, and F1 and F2 are two examples of fitting matrices.
Using an undetermined element ∗, all fitting matrices for a
given side information graphG can be represented by a unique
square matrix A ∈ {0, 1, ∗}n×n. For the considered example,
the matrix representation of G is described by

A =

⎡
⎢⎢⎢⎣

1 ∗ 0 ∗ ∗
∗ 1 ∗ 0 0
0 0 1 ∗ 0
0 ∗ 0 1 0
0 0 0 ∗ 1

⎤
⎥⎥⎥⎦ . (3)

Since a matrix fitting G whose rank is minrk2(G) pro-
vides an optimal linear code for the index coding problem
represented by the directed graph G, the linear binary index
code design problem can be reduced to a low rank matrix
completion (LRMC) problem over GF (2). However, it is
known that LRMC is NP-hard [8]. Thus, when the problem
size is large, solving the problem based on LRMC is difficult.
Thus, several researchers proposed heuristic algorithms for
linear index coding and some of the well known heuristic
algorithms are provided in the below.

A. Existing Algorithms for Index Coding
Most of the existing algorithms are based on minimum

clique-cover heuristic to devise an efficient method to min-
imize the number of transmissions for a given linear index
coding problem, since a clique can be covered by a single
transmission.

1) The least difference greedy (LDG) clique-cover algo-
rithm: For a given side information graph, there exist many
different ways to clique-cover the graph. Consider the directed
graph in Fig. 2 and consider two different ways of clique-cover
as shown in methods 1 and 2 in Fig. 2. One can easily see that
Method 1 of clique-cover yields a shorter code length. Birk and
Kol [1], [2] proposed a heuristic way to find a better way to
clique-cover by defining some distance between two rows of a
fitting matrix. From a matrix completion perspective, clique-
covering can be regarded as merging of the corresponding
rows. The distance between two rows in a fitting matrix is
defined as the sum of inter-entry distance, where the inter-
entry distance d is defined as [2]

d(0, 0) = d(1, 1) = d(∗, ∗) = 0,
d(0, ∗) = d(1, ∗) = 1, and d(0, 1) = ∞.

(4)

Based on the defined inter-row distance, the LDG algorithm
finds the minimum (finite) distance among all possible pairs
of two rows in a fitting matrix and merge two rows with the
minimum inter-row distance, and then iterates this procedure
until all inter-row distances become infinite. At the step of
merging two rows, ∗ in the fitting matrix is determined as
either 0 or 1, and the two nodes corresponding to the two
merged rows become a clique. In this way, one can cover the
whole graph with a smaller number of cliques.

1 1

2 2

3 34 4

5 5

Method 1 Method 2

Fig. 2. Two different clique-cover methods for a given directed graph

2) Maximum matching: The maximum matching is a
clique-cover method to maximize the number of cliques of
size 2. Since a clique of size 2 can be covered by a single
transmission, the maximum matching can be a heuristic way
to solve linear index coding problems. We consider the ex-
isting maximum matching algorithm proposed by Galil [9] to
performance comparison.
3) Color saving heuristic: The color saving heuristic algo-

rithm [3] first finds cliques of size three and then computes
a maximum matching of the resulting graph. In Section IV,
we implement the first step by brute force and compute the
maximum matching by the algorithm in [9].

III. THE PROPOSED INDEX CODING ALGORITHM:
AN EXTENDED LDG ALGORITHM

In this section, we develop two new extensions on the
existing LDG algorithm in [2]. In the first subsection, we
propose an extension named column-merging heuristic by
considering the LDG process on the transpose matrix. In
the second, we present an observation that there is still an
opportunity to additionally reduce the rank of the matrix

2014 IEEE International Symposium on Information Theory

502

obtained by the LDG algorithm, if there is a cycle in the
resulting side information graph.

A. Column-merging heuristic
Note that a linear binary index coding problem following

Definition 1 can fully be represented by a square matrix A ∈
{0, 1, ∗}n×n whose diagonal entries are all 1 and the other
entries are 0 or *. Using this fact, we define the transpose
problem of a given index coding problem as follows.
Definition 4 (Transpose Index Coding Problem): For

a given linear binary index coding problem I that is
represented by a square matrix A, the transpose index coding
problem IT is defined as the problem represented by A

T ,
where AT is the transpose of A.
It is easy to see that Definition 4 is valid since AT also has

all 1 diagonal entries and 0 or ∗ at the off-diagonal positions.
We provide the relation between an index coding problem
and its transpose index coding problem as introducing the
following proposition.
Proposition 1: There exists a linear index code of length l

for an index coding problem I if and only if there exists a
linear index code of length l for IT .
Proof: Consider a linear index coding problem I that can

be represented by a square matrix A ∈ {0, 1, ∗}n×n. If there
exists a linear index code of length l for I, there exists a fitting
matrixA1 for I such that rank(A1) = l. Then, we can obtain
a fitting matrix A

T
1 for IT such that rank(AT

1) = l, which
represents a linear index code of length l for IT . The converse
is trivial from the fact that (IT)T = I. �

From Proposition 1, the row-combing LDG algorithm is
applied to A

T first and the resulting matrix is transposed to
obtain a fitting matrix for the original problem. In some cases,
this approach yields a better node-merging result. In fact,
at each merging step of the LDG algorithm, this alternative
approach can be considered. To illustrate this, consider the
following example:
Example 2: Consider a linear binary index coding problem

I described by a 4× 4 matrix A:

A =

⎡
⎢⎣

1 0 ∗ 0
∗ 1 0 ∗
∗ ∗ 1 ∗
∗ ∗ ∗ 1

⎤
⎥⎦ . (5)

Applying the LDG algorithm to A,
r1 r2 r3 r4

r1 - ∞ 4 ∞
r2 - - ∞ 3
r3 - - - 2
r4 - - - -

−→

r1 r2 r3, r4
r1 - ∞ ∞
r2 - - ∞

r3, r4 - - -

(6)
we obtain the resulting matrix ALDG(I):

ALDG(I) =

⎡
⎢⎣

1 0 ∗ 0
∗ 1 0 ∗
∗ ∗ 1 1
∗ ∗ 1 1

⎤
⎥⎦ . (7)

As we can see in (7) and the corresponding row distance table
(6), in this case, only one row-merging occurs and this only

guarantees the reduction of the rank by one. However, if we
apply the LDG algorithm to IT , there still exist a finite number
in the row distance table after the first row-merging as seen
in (8), and thus we can have one more row-merging. This
guarantees the reduction of the matrix rank by two.

r1 r2 r3 r4
r1 - ∞ 3 ∞
r2 - - ∞ 2
r3 - - - 4
r4 - - - -

−→

r1 r2, r4 r3
r1 - ∞ 4

r2, r4 - - ∞
r3 - - -

(8)
Finally, we obtain ALDG(IT).

ALDG(IT) =

⎡
⎢⎣

1 0 1 ∗
0 1 ∗ 1
1 0 1 ∗
0 1 ∗ 1

⎤
⎥⎦ . (9)

Note that transposing the matrix A, applying one row-
merging step of the LDG algorithm, and transposing the
resulting matrix back is equivalent to just column-merging in
the original matrix A. As shown in the example, this column
merging can be more effective than row merging, depending on
the number of ∗’s consumed for merging. Merging is simply
making two rows (or two columns) the same by setting ∗
to 0 or 1 appropriately. Hence, if less ∗’s are consumed, we
have more chance for a larger number of merging steps, i.e.,
larger rank reduction. Hence, at each merging step of the LDG
algorithm, we consider both row-merging and column-merging
and choose the merging requiring less ∗’s.

B. Cycle-of-three-nodes detection
We first present an example that shows the motivation of

the second extension.
Example 3: Consider a linear binary index coding problem

represented by a square matrix A:

A =

⎡
⎢⎣

1 ∗ ∗ 0
∗ 1 ∗ ∗
0 0 1 ∗
∗ ∗ 0 1

⎤
⎥⎦ . (10)

Before applying the LDG algorithm to A, we present a solu-
tion matrix Aopt of which rank over GF (2) is minrk2(G) =
2,

Aopt =

⎡
⎢⎣

1 1 1 0
1 1 1 0
0 0 1 1
1 1 0 1

⎤
⎥⎦ . (11)

Now, applying the LDG algorithm to A, we have

A =

⎡
⎢⎣

1 ∗ ∗ 0
∗ 1 ∗ ∗
0 0 1 ∗
∗ ∗ 0 1

⎤
⎥⎦ −→ ALDG =

⎡
⎢⎣

1 1 ∗ 0
1 1 ∗ 0
0 0 1 ∗
∗ ∗ 0 1

⎤
⎥⎦ . (12)

After the LDG algorithm yields ALDG which has remaining
∗’s, the conventional LDG algorithm finally fills ∗’s in the
merged rows with the same arbitrary value and fills other
∗’s arbitrarily. Since only one row-merging occurs in (12),
the guaranteed rank reduction is one in this case. However,
an important observation is that ALDG still has a chance to

2014 IEEE International Symposium on Information Theory

503

become Aopt by filling out the remaining ∗’s in a smart way.
Fig. 3 shows the merged directed graph for Example 3 after
the merging steps of the LDG algorithm are finished. In the
figure, it is seen that a cycle is formed after nodes 1 and 2 are
merged into a clique by the LDG algorithm. Due to the cycle,
there is an opportunity that the rows of ALDG with the merged
rows considered as one row can further be linearly dependent
and the rank reduction at least by one can be attained. The

11 122 2

33 344 4
G(V,E) clique-cover a cycle

Fig. 3. The LDG algorithm process of Example 3.

purpose of the second extension is to find the possibility of
linear dependence among the rows of an incomplete matrix
ALDG with the merged rows considered as one row and to
fill out the remaining ∗’s so that the linear dependence is
realized if it exists. Then, how can we find the possible linear
dependence among the rows of ALDG with the merged rows
considered as one row just by observing ALDG?
To answer this question, consider Aopt and its first, third

and fourth rows. (The first and second rows will be merged
by the LDG algorithm.) We have[

1 1 1 0
]
⊕

[
0 0 1 1

]
=

[
1 1 0 1

]
, (13)

where ⊕ is the modulo-2 addition operator. That is, the first,
third and fourth rows of Aopt are linearly dependent over
GF (2). Now consider the corresponding rows in ALDG and
the following equation corresponding to (13):[

1 1 ∗ 0
]
⊕

[
0 0 1 ∗

]
=

[
∗ ∗ 0 1

]
, (14)

We need to check that (14) is valid with properly assigned ∗’s
in (14). To do so, we define a row addition operation ⊕∗ as
follows.
Definition 5 (Row Addition Operation with ∗): For a given

square matrixA ∈ {0, 1, ∗}n×n, the row addition operator⊕∗

with ∗s is defined as follows.

Ai,k ⊕
∗
Aj,k =

{
Ai,k ⊕Aj,k Ai,k �= ∗ and Aj,k �= ∗

∗ Ai,k = ∗ or Aj,k = ∗,
(15)

where Ai and Ai,k denote the i-th row and the (i, k)-th entry
of A, respectively.
By the definition, the addition of A1 and A3 is now given

by[
1 1 ∗ 0

]
⊕

∗
[
0 0 1 ∗

]
=

[
1 1 ∗ ∗

]
. (16)

Since the added row has a finite inter-row distance (defined
in (4)) with the A4 =

[
∗ ∗ 0 1

]
, it is possible to make

the added row the same A4. Both A1 ⊕ A3 and A4 can be
made as [1, 1, 0, 1]. Thus, the linear dependence of any three
rows Ai, Aj , and Ak of ALDG can be checked by computing
Ai⊕

∗
Aj , computing the inter-row distance betweenAi⊕

∗
Aj

and Ak, and checking the finiteness of the inter-row distance.

Proposition 2: Consider a linear index coding problem for
a graph G that is represented by a square matrix A ∈
{0, 1, ∗}n×n. After applying the LDG algorithm to A, we
have ALDG, which can have remaining ∗’s. For a selected set
of three rows of ALDG, if an added row of any two rows of
the selected set has finite distance with the other row of the
selected set, the set of three nodes which corresponds to the
set of three rows forms a cycle in G.
Proof: We briefly sketch the proof due to space limitation.

Since the merging steps of the LDG algorithm is finished,
we have only two cases for a selected set of three rows, as
shown in Fig. 4. Note that in Fig. 4 there cannot be a pair

11

22 33

Fig. 4. Two non-isomorphic directed graphs with three nodes

of nodes with bidirectional links. If such a pair should exist,
then the pair would form a clique and the merging steps of
the LDG algorithm would reduce the pair to be one node.
The linearly dependent case corresponds to the case of a cycle
of three nodes in the left side in Fig. 4. (In the case of the
graph in the right side of Fig. 4, the corresponding three rows
cannot be made linearly dependent by any choice for ∗’s.)
Thus, checking the linear dependence of three rows in ALDG
corresponds to detection of a cycle of three nodes. �

If the probability that each pair of two nodes in the directed
graph has an edge is p < 1, then the probability that an
arbitrary set of three nodes forms a cycle is p3, whereas in the
case of a cycle with four nodes the probability is p4. Thus,
when p is sufficiently small, it is quite effective only to search
cycles with three nodes. The proposed second extension to the
original LDG algorithm is to search all cycles of three nodes
existing in the directed graph of effective nodes in ALDG after
the merging steps of the LDG algorithm is finished. For the
detected cycles with three nodes, we fill out the corresponding
∗’s to realize the linear dependence of the corresponding three
rows. The proposed algorithm is given in Algorithm I.

IV. NUMERICAL RESULTS
To evaluate the performance of the proposed algorithm,

we compare the algorithm with other existing index coding
algorithms: the original LDG algorithm [2], the maximum
matching [9], and the color saving heuristic [3]. We considered
two network size of 50 nodes and 100 nodes. In each case,
we randomly generated an edge for each pair of nodes in the
network independently with probability Pedge 20 times. For
each realized index coding network, we evaluated the perfor-
mance of the considered linear index coding algorithms. The
performance is measured by the length of the resulting index
code. Figures 5 and 6 show the performance result averaged
over the 100 random realizations for 50 nodes case and 40
random realizations for 100 nodes case. It is seen that the
performance gain of the proposed algorithm over the existing

2014 IEEE International Symposium on Information Theory

504

algorithms in the reasonable range of 10−2 ≤ Pedge ≤ 10−1

is considerable. It is seen that roughly 10 % of the code length
reduction is achieved. Note that the complexity increase of the
proposed algorithm is not prohibitive. Search for cycles with
three nodes requires complexity order of N3 for network size
N .

10−3 10−2 10−1 100
0

5

10

15

20

25

30

35

40

45

50
Performance Evaluations

Pedge

N
u
m

b
e
r

o
f
T
r
a
n
s
m

it
t
e
d

B
lo

c
k
s

LDG algorithm [2]
Extended LDG algorithm
Color Saving Heuristic [3]
Maximum Matching [9]

Fig. 5. Performance: Index coding network of 50 nodes

10−3 10−2 10−1 100
0

10

20

30

40

50

60

70

80

90

100
Performance Evaluations

Pedge

N
u
m

b
e
r

o
f
T
r
a
n
s
m

it
t
e
d

B
lo

c
k
s

LDG algorithm [2]
Extended LDG algorithm

Fig. 6. Performance: Index coding network of 100 nodes

V. CONCLUSION

In this paper, we have considered the linear binary index
coding problem. Motivated by practical needs for an efficient
linear index coding algorithm, we have studied some existing
index coding algorithms and have proposed an improved linear
binary index coding algorithm by adding two extensions to
the existing LDG algorithm: column-merging at each merging
step and cycle-of-three-nodes detection at the end of the
LDG algorithm. Numerical result shows that the gain of
the proposed algorithm based on two simple heuristics is
considerable.

REFERENCES

[1] Y. Birk and T. Kol, “Informed-source coding-on-demand (iscod) over
broadcast channels,” in INFOCOM ’98. Seventeenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 3, pp. 1257–1264 vol.3, 1998.

[2] Y. Birk and T. Kol, “Coding on demand by an informed source (iscod)
for efficient broadcast of different supplemental data to caching clients,”
Information Theory, IEEE Transactions on, vol. 52, no. 6, pp. 2825–2830,
2006.

[3] M. A. R. Chaudhry and A. Sprintson, “Efficient algorithms for index
coding,” in INFOCOM Workshops 2008, IEEE, pp. 1–4, 2008.

[4] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side
information,” Information Theory, IEEE Transactions on, vol. 57, no. 3,
pp. 1479–1494, 2011.

[5] D. Papailiopoulos and A. Dimakis, “Locally repairable codes,” in Infor-
mation Theory Proceedings (ISIT), 2012 IEEE International Symposium
on, pp. 2771–2775, 2012.

[6] A. Rawat, O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Optimal
locally repairable and secure codes for distributed storage systems,”
Information Theory, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2013.

[7] E. Lubetzky and U. Stav, “Nonlinear index coding outperforming the
linear optimum,” Information Theory, IEEE Transactions on, vol. 55,
no. 8, pp. 3544–3551, 2009.

[8] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization,” SIAM Review,
vol. 52, no. 3, pp. 471–501, 2010.

[9] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,”
ACM Comput. Surv., vol. 18, pp. 23–38, Mar. 1986.

Algorithm 1 The Proposed Extended LDG Algorithm
Require: A square matrix A ∈ {0, 1, ∗}n×n which represents a linear
binary index coding problem.
repeat
for i = 1 to n− 1 do
for j = i+ 1 to n do

dr(i, j) =
∑

k∈columns d(Ai,k ,Aj,k)
dc(i, j) =

∑
k∈rows d(Ak,i,Ak,j)

end for
end for
(i1, j1) = argmin(i,j):i<j,dr(i,j) �=0 dr(i, j)
(i2, j2) = argmin(i,j):i<j,dc(i,j) �=0 dc(i, j)
if dr(i1, j1) ≤ dc(i2, j2) and dr(i1, j1) < ∞ then
for k = 1 to n do

Ar,k =

⎧⎨
⎩

Ai1,k Ai1,k = Aj1,k

Ai1,k Aj1,k = ∗
Aj1,k otherwise.

(17)

end for
Ai1 ← Ar , Aj1 ← Ar

else if dc(i2, j2) < dr(i1, j1) then
for k = 1 to n do

Ak,c =

⎧⎨
⎩

Ak,i2 Ak,i2 = Ak,j2
Ak,i2 Ak,j2 = ∗
Ak,j2 otherwise.

(18)

end for
AT

i2
← AT

c , AT
j2

← AT
c

end if
until min (dr(i1, j1), dc(i2, j2)) = ∞

for cyc = 1 to 2 do
for i = 1 to n− 2 do
for j = i+ 1 to n− 1 do
for k = 1 to n do

Aadd(i,j),k = Ai,k ⊕∗
Aj,k. (19)

end for
repeat
for m = j + 1 to n do

drm(m) =
∑

k∈columns d(Aadd(i,j),k,Am,k)
end for
m1 = argminj<m≤n,drm(m) �=0 drm(m)
Make Aadd(i,j) and Am1

be same.
until drm(m) are 0 or ∞ for all j < m ≤ n

if cyc = 1 then
Fill out the ∗’s in Ai and Aj by Rule 1.

else
Fill out the ∗’s in Ai and Aj by Rule 2.

end if
end for

end for
end for
(Filling rules)

(Rule 1) If any two elements of {Ai,k ,Aj,k,Aadd(i,j),k} are
already determined with one element undetermined, determine the
remaining ∗ to satisfy (19).
(Rule 2) Apply Rule 1 first and additionally perform
Ai,k = ∗c, (Ai,k ,Aj,k,Aadd(i,j),k) = (∗, 1, ∗) or (∗, ∗, 1),
where ∗c denotes the complement of ∗, i.e., ∗c = ∗ ⊕ 1.

2014 IEEE International Symposium on Information Theory

505

