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Abstract—The impact of training on the performance of mil-
limeter wave multi-user multiple-input multiple-output d ownlink
systems based on hybrid analog/digital beamforming is investi-
gated in the regime of a large number of transmit antennas under
the uniform random single-path channel model. In particular, the
performance loss with respect to the number of training beams is
quantified for general training-based data transmission schemes
with several different training beam designs when full training
is not applicable. Our analysis provides insights into effective
training beam design and simulation result validates our analysis.

Keywords—millimeter wave MU-MIMO downlink, impact of
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I. I NTRODUCTION

The millimeter (mmWave) technology is one of the lead-
ing candidates for future wireless access networks [1]. The
mmWave technology can use the large bandwidth available in
the mmWave spectrum from 30 to 300 GHz to provide high
data rates based on the large bandwidth. However, the propa-
gation characteristics in the mmWave band are not so friendly;
mmWave signals experience large path loss and blockage.
Overcoming this large path loss and blockage in the mmWave
band is a major challenge to realizing the mmWave technology.
Fortunately, due to the small wavelengths of mmWave signals,
large antenna arrays can be placed into small physical spaces
and it is possible to perform highly directional beamforming
based on large antenna arrays to compensate for the large path
loss in the mmWave band. However, there are several practical
challenges to highly directional beamforming based on large
antenna arrays. The first is the hardware limitation. That is, if
each antenna is attached to a radio-frequency (RF) chain and
an analog-to-digital or digital-to-analog converter, theamount
of required hardware is too large since there are many antenna
elements in a large antenna array. The second is that there
exist too many beamforming directions to initially search to
find the desired users and their channel gains with a narrow
transmit beam with a high beamforming gain. In other words,
training overhead is large for large antenna arrays. There has
been much effort to resolve the above issues both in single-user
(SU) mmWave multiple-input multiple-output (MIMO) and
multiuser (MU) mmWave MIMO, e.g., hybrid A/D beamform-
ing and efficient training signal design [2]–[10]. In particular,
in the case of mmWave MU-MIMO, which is the main focus
of this paper, several hybrid A/D beamforming methods, beam
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selection or user selection methods are proposed [7]–[10].In
[7], a two-stage MU hybrid precoding method is proposed and
its performance is analyzed in several regimes including the
large-antenna-array regime and the limited feedback regime. In
[8], a beam selection method is proposed for mmWave MU-
MIMO systems with analog beamformers at the BS and each
user. In [9] and [10], the performance of random beamforming
is analyzed in sparse mmWave channels and new efficient
scheduling methods are proposed by exploiting the sparsity
of mmWave channels. However, most previous works on
mmWave MU-MIMO systems including [7]–[10] implicitly
assume full training which induces heavy training overhead.

In this paper, we consider mmWave MU-MIMO downlink
systems based on hybrid A/D beamforming. Note that with
hybrid A/D beamforming the channel estimation based on
uplink signals and channel reciprocity is not directly applicable
since the measured uplink channel at the baseband after digital-
to-analog conversion is the product of the BS analog beam-
forming matrix and the actual wireless channel and the design
of the BS analog beamforming matrix is left independent of
the uplink signals. Thus, we here consider a general downlink
training-based data transmission scheme (described by steps
A.1 to A.3 in Section II) and investigate the impact of training
on the performance of the general training-based mmWave
MU-MIMO downlink system. In particular, we focus on the
impact of the amount of training and the beam shape on the
performance of mmWave MU-MIMO downlink and analyze
the performance loss associated with the amount of training
and the beam shape relative to full training in an asymptotic
regime (for large scale antenna arrays) in which the number
of transmit antennas tends to infinity.

II. SYSTEM MODEL

We consider a mmWave MU-MIMO downlink system
where the BS withM transmit antennas andMRF (≤ M) RF
chains simultaneously serveK users withN receive antennas
each. We assume that each user has a single RF chain and
performs analog beamforming with theN receive antennas.
Hence, the BS transmits only one stream to each user and
the maximum number of users simultaneously served by the
BS is the number of RF chains of the BS. So, we simply set
K = MRF . We assume that the BS performs hybrid beam-
forming to theK users with the overall beamforming matrix
given by the product of anMRF × K digital beamforming
matrix W = [w1, · · · ,wK ] at the baseband, wherewk is the
digital beamforming vector for userk, and anM×MRF analog
beamforming matrixU = [u1, · · · ,uMRF

] at the RF band.
Then, the precoded (beamformed) downlink signalx is given
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by x = UWd, whered = [d1, · · · , dK ]T is theK × 1 data
symbol vector assumed to be a zero-mean Gaussian vector with
variancePk/K, i.e., d ∼ CN (0, Pt

K I), andPt is the average
total transmit power. We normalize the digital beamforming
matrix W such that‖UW‖2F = K to have the total transmit
power constraintPt = E[‖x‖2] = Pt

K ‖UW‖2F . Note that
if U

H
U = I, the constraint‖UW‖2F = K is reduced

to ‖W‖2F = K. For simplicity, we consider a narrowband
fading channel model. (For wideband channels, OFDM can
be adopted and the considered model here corresponds to one
subcarrier channel in this case.) Then, the received signalof
userk at theN receive antennas is given by

rk = HkU

K∑

m=1

wmdm + nk, (1)

whereHk is theN × M channel matrix that represents the
downlink channel between the BS and userk, and nk ∼
CN (0, I) is the noise vector. With receive analog beamforming
of userk, the final receiver output of userk is given by

yk = v
H
k HkU

K∑

m=1

wmdm + v
H
k nk (2)

wherevk is the analog beamforming vector of userk.

To model the sparsity of mmWave channels, we adopt the
widely-used geometric channel model withLk scatterers for
userk and assume that the antenna configuration of the BS
and each userk is the uniform linear array (ULA). Thus, the
channel matrixHk between the BS and userk is given by
[11], [12]

Hk =

√

MN

Lk

Lk∑

i=1

αk,iaR(φk,i)aT (θk,i)
H . (3)

Here, αk,i is the i-th path gain of userk; φk,i and θk,i
are respectively the normalized angle-of-arrival (AoA) and
angle-of-departure (AoD) of pathi of user k generated ac-
cording to the uniform distribution on the interval[−1, 1),

i.e., φk,i, θk,i
i.i.d.∼ Unif[−1, 1]; and the ULA steering and

response vectors of the BS and userk are respectively given
by aT (θ) = 1√

M
[1, e−ιπθ, · · · , e−ιπ(M−1)θ]T and aR(φ) =

1√
N
[1, e−ιπφ, · · · , e−ιπ(N−1)φ]T , whereι =

√
−1. ∗

A. The Considered Training-Based Data Transmission
Scheme: Downlink Training, Feedback, and Achievable Rate

In this subsection, we describe the considered training-
based data transmission scheme. In the considered scheme,
we employ the classical MU-MIMO downlink training based
on beam sweeping [13] adapted to hybrid A/D beamforming.
The BS sequentially transmits analog training beam vectors
to the space in the cell and each user estimates its channel
by sweeping all of its receive analog beams for each transmit
training beam vector. For example, in the full training method,
the BS transmits allM orthogonal training beams available

∗The normalized AoA (AoD)θ ∈ [−1, 1] is related to the physical AoA
(AoD) φ ∈ [−π/2, π/2] as θ =

2d sin(φ)
λ

[11], where d and λ are the
distance between two adjacent antenna elements and the carrier wavelength,
respectively. We assume the critical spatial sampling ofd/λ = 1/2 in this
paper.

with M transmit antennas and each user uses allN orthogonal
receive beams available withN receive antennas to estimate
the N ×M channel matrix. In this case, the total number of
training overhead required for channel estimation is givenby
MN . However, it may be practically unreasonable to execute
the full training method since a long training period is required
for a large-scale antenna array at the BS operating in the
mmWave band and this reduces the data rate significantly.
Therefore, it is necessary that the BS performs partial training
based on a smaller numberS of training beams than the
numberM of transmit antennas, yielding a shorter training
period. Then, a natural question arising in this case is “what is
the performance loss relative to the full training performance
when only S (K = MRF ≤ S < M) training beams
are used and how should we design the training beam set
{t1, · · · , tS}?” In this paper, we investigate this performance
loss for several different training beam designs.

The overall procedure of the considered downlink training-
based data transmission scheme is described in the below.

A.1 During the training period, the BS transmitsS analog
training beam vectors{ti}Si=1 to K users in the cell and
each userk estimates its channel state information (CSI)
by sweeping itsN receive analog beam vectors{vk,j}Nj=1
for each transmit training beam vector. Here, we assume
that{ti}Si=1 and{vk,j}Nj=1 are sequences of orthonormal
vectors.

A.2 After the training period is over, each userk computes

{v∗
k, t

∗
k} = argmax

vk,j ,ti

|vH
k,jHkti|; (4)

determinesv∗
k as the receive analog beam vector to be

used during the data transmission; and feeds some channel
quality indicator (CQI) denoted byFk, which will be
defined soon, back to the BS.

A.3 Based onFk, the BS properly designs the transmit analog
beamforming matrixU and the digital beamforming
matrix W, and serves theK users with the designed
beamforming matrices.

Several different feedback methods can be considered for the
above scheme, and the achievable sum rate of the scheme
depends on the type of CQIFk from each user and is given
as follows.

i) Fk = the corresponding beam index oft∗k (partial CSI
feedback): In this case, we can choose the analog beam-
forming matrix asU∗ = [t∗1, · · · , t∗K ] and the digital
beamforming matrix asW = I to yield single-beam
matched filtering. Then, the average achievable sum rate
in this case is given by

Rindex
sum = E

[
K∑

k=1

log (1 + SINRk(U
∗, I))

]

(5)

where

SINRk(U,W) =
Pt

K |h̄H
k Uwk|2

1 + Pt

K

∑

m 6=k |h̄H
k Uwm|2

(6)

andh̄H
k := v

∗H
k Hk is the receiver-filtered channel vector

of user k. The amount of feedback required for this
scheme is one integer for each user.
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ii) Fk = [h̄H
k t1, · · · , h̄H

k tS ]
T (full CSI feedback): In this

case, we can design the analog and digital beamforming
matrices at the BS by solving the following problem:

Rfull
sum = E

[

max
U,W

K∑

k=1

log (1 + SINRk(U,W))

]

, (7)

under the conditionsU = [ti]i∈I and ‖UW‖2F = K,
where I is the index set of chosen transmit beams
out of the S training beams{t1, · · · , tS} with |I| =
K = MRF ≤ S. Note that the number of possible
combinations forU is

(
S
|I|
)
. The amount of feedback

required for this scheme is2S real numbers for each user.
iii) Fk = some CQI betweeni) and ii): This case includes

various feedback schemes. For example, the two-stage
feedback scheme considered in [7] belongs to this class.
The average sum rate of this class is different for different
Fk but is lower and upper bounded as

Rindex
sum ≤ Rsum(Fk) ≤ Rfull

sum, ∀ Fk. (8)

B. The Considered Training Beam Vectors

In Section II-A, we did not specify the training beam set
for beam sweeping. There can be many types of training beams
[13]. For example, in the case of full training withM transmit
antennas, one can considerti = [0, · · · , 0, 1

︸︷︷︸

i−th

, 0, · · · , 0]T ,

ti = aT

(
2(i−1)

M

)

, a randomly-spread beam over the entire
AoD domain (typically encountered in the compressed sensing
(CS) based channel estimation for mmWave MIMO), or thei-
th column of anyM×M unitary matrix. However, in this paper
we consider the beamforming-type training beams since it is
reasonable to assume that the training beam itself should be
beamformed to identify channel elements by overcoming the
large path loss in the mmWave band. To investigate the impact
of width and coverage of partial beamforming-type training
beams on the performance of mmWave MU-MIMO downlink,
we consider the following three sets ofS training beams which
differ in the combination of width and angle coverage:

B.1 S consecutive narrow beams with the spacing of2
M

between two adjacent training beams in the normalized
AoD domain:

t
(M)
i = aT (ϑi) = aT

(

ϑ+
2(i− 1)

M

)

, (9)

for i = 1, · · · , S, whereϑ ∼ Unif[−1, 1] is the random
offset.

B.2 S narrow beams equally-spaced in the entire interval
[−1, 1] of the normalized AoD domain:

t
(S)
i = aT

(

ϑ+
2(i− 1)

S

)

, (10)

for i = 1, · · · , S, whereϑ ∼ Unif[−1,−1 + 2
S ].

B.3 S wide beams each of which is the normalized sum ofD
consecutive narrow beams (Woodward Lawson synthesis)
[14]:

u
(WB)
i =

√

1

D

Di∑

d=D(i−1)+1

e−ιπϑd(M−1)/2
aT (ϑd),

(11)

Fig. 1. (a) Beam patterns of the considered sets ofS training beams (9),
(10), and (11) versus normalized AoD (from top to bottom), and (b) the
corresponding representations in the normalized AoD domain.

for i = 1, · · · , S, whereD = M
S and ϑd = ϑ + 2(i−1)

M
with ϑ ∼ Unif[−1,−1 + 2/M ], and we assume thatS
dividesM for the sake of simplicity.

Note that the main lobe width of each narrow beam is given
by 2

M . In the case of the wide beam, the main lobe width is
increased by factorD but the beam pattern gain is reduced by
factor

√
D, as shown in Fig. 1(a). Fig. 1(b) shows the visual

illustration of the three considered sets of training beamsin
the normalized AoD domain with sidelobes hidden.

For the receive analog beams, we assume that each user
k uses a set ofN orthonormal analog beamforming vectors
given by

vk,j = aR

(

ϕk +
2(j − 1)

N

)

, for j = 1, · · · , N (12)

whereϕk ∼ Unif[−1, 1]. In this paper, we assumeN ≪ M
and full receiver training with theN beam vectors at the
receiver side.

III. A SYMPTOTIC ANALYSIS OF IMPACT OF TRAINING

Rate analysis of hybrid A/D beamforming systems is
difficult since the constraints for analog and digital beamform-
ing matrices are intertwined. Furthermore, mmWave MIMO
channels are sparse in the AoD and AoA domains and thus
many available results in rich scattering channel environments
are not applicable. To circumvent these difficulties and analyze
the impact of training on the rate performance of mmWave
MU-MIMO downlink, we adopt the uniform random single-
path (UR-SP) channel model capturing the highly-directional
propagation in the mmWave band [2], [7], [9], [10], [15],
[16], which is given by (3) withLk = 1 for all k, and
apply asymptotic techniques with the numberM of transmit
antennas tending to infinity to capture the situation of large-
scale transmit antenna arrays. We setK = M q with q ∈ (0, 1)
andS = M ℓ with ℓ ∈ [q, 1) for K andS as functions ofM
to implement our assumptionK ≤ S < M in the asymptotic
regime ofM tending to infinity.

With the above assumptions, the main theorem regarding
the rate performance of the three training beam designs B.1,
B.2, and B.3 is given in the below.
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Theorem 1: Under the UR-SP channel model (3) with
Lk = 1 and fixedN and Pt, asM → ∞ with K = M q

(q ∈ (0, 1)) and S = M ℓ (ℓ ∈ [q, 1)), the average sum
rateRsum(Fk) of the training-based data transmission scheme
described by steps A.1, A.2 and A.3 scales as

Rsum(Fk) =







o (Mq) for B.1
Θ
(

Mq log(1 +M2ℓ−q−1)
)

for B.2
Θ
(

Mq log(1 +M ℓ−q)
)

for B.3,
(13)

regardless ofFk, where o(·) and Θ(·) are the small-o and
big-theta of Bachmann-Landau notation (asymptotic notation),
respectively.

Proof: Proof is omitted due to space limitation.

It can be shown that the average sum rateR⋆
sum of the full

training method scales as

R⋆
sum = Θ(K log(1 +M/K)) (14)

= Θ(M q log(1 +M1−q)), (15)

asM → ∞. From Theorem 1, we have the following corollary.

Corollary 1: Eq. (13) in Theorem 1 can be re-expressed
as

Rsum(Fk) =







o (K) for B.1
Θ
(
K log(1 + ξ2 M

K )
)

for B.2
Θ
(
K log(1 + ξM

K )
)

for B.3,
(16)

where ξ = S
M (< 1) is the ratio of the number of training

beams to the number of transmit antennas.

Proof: (16) is simply obtained by substitutingM q = K
andM ℓ = S into (13).

The relative rate performance of partial training to that offull
training can be captured by the ratioµ of Rsum(Fk) to R⋆

sum,
i.e.,µ := Rsum(Fk)

R⋆
sum

. Then, by combining the above results, we
have the following theorem regardingµ:

Theorem 2: The ratioµ converges to

µ →







0, for B.1 andℓ ∈ (q, 1)
2ℓ−q−1
1−q , for B.2 andℓ ∈ (1+q

2 , 1)
ℓ−q
1−q , for B.3 andℓ ∈ (q, 1)

(17)

asM → ∞.

Proof: It is obtained by simple manipulation with substi-
tuting (13) and (15) intoµ.

Corollary 1 states that we have a degree-of-freedom (DoF)
loss forRsum(Fk) compared toR⋆

sum for the training beam
design B.1. On the other hand, when the training beam B.2 is
used, we have full DoF but an array-gain loss ofξ2. This
implies that when we use narrow training beams, equally-
spaced entire-angle covering beams have better performance
than the consecutive beams covering a small range of angles
if K users are spread over the entire angle domain. The
performance difference between B.1 and B.2 results from
the fact that the equally-spaced beams additionally exploit
the major side lobes to estimate to some extent the channel
components between the boresights of two adjacent beams,
whereas the consecutive beams do not. In the case of B.3,
we have full DoF and the array-gain loss of onlyξ, which is
smaller thanξ2 since0 < ξ < 1.

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ℓ

µ

 

 

Wide beams
Equally−spaced narrow beams
Consecutive narrow beams
Theoretical line

M=400,2000,10000

Fig. 2. µ versusℓ whenq = 0.4.

Theorem 2 gives a rough answer to our intial question
“what is the performance loss of partial training relative to
full training in mmWave MIMO downlink?” since the ratioµ
of Rsum(Fk) to R⋆

sum is quantified as an explicit function
of q, ℓ and the type of training beams. For B.3, the ratioµ
linearly increases from0 to 1 as ℓ increases fromq to 1. For
B.2, µ starts to increase from 0 atℓ = 1+q

2 , which is larger
thanq for q < 1. In the case of B.1, the asymptotic ratioµ is
zero forℓ ∈ (q, 1).

IV. N UMERICAL RESULTS

In this section, we provide a numerical result to validate our
asymptotic results in the previous section. All the expectations
were performed over 100 channel realizations and we set
Pt = 1, N = 4 and MRF = K. Fig. 2 shows the ratio
µ(= Rsum(Fk)

R⋆
sum

) for each type of training beams versusℓ for
M = 400, 2000, 10000 when q = 0.4. Since we modeled
K = ⌊M q⌋ in this simulation, we haveK = 10, 20, and
39 for M = 400, 2000, and10000, respectively. We computed
Rsum(Fk) andR⋆

sum by simulating the two-stage feedback-
based hybrid precoding design method proposed in [7] with
the assumption of perfect CSI at the second stage. It is seen
that the curve ofµ of each type of training beams gradually
converges to each theoretical line asM increases. Note that
there exists some gap between each theoretical asymptotic line
and the finite-sample result. This results from the slow rateof
convergence.

V. CONCLUSIONS

In this paper, we have considered mmWave MU-MIMO
downlink systems with hybrid A/D beamforming and exam-
ined the impact of training on the rate performance of systems.
We have quantified the performance loss w.r.t. the numberS of
training beams in large-scale mmWave MU-MIMO for three
meaningful different types of training beams under the UR-
SP channel model that captures mmWave MIMO channels.
The provided results in this paper give some insights into the
impact of training design in mmWave MU-MIMO and more
efficient training beam design is left as future work.
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