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Abstract—In this paper, the performance of random beam-
forming (RBF) which requires only partial channel state infor-
mation (CSI) feedback is investigated for millimeter-wave (mm-
wave) multiple-input multiple-output (MIMO) downlink systems
under a new channel model that captures both the independent
and identically-distributed (i.i.d.) Rayleigh fading MIMO channel
model and the uniform random line-of-sight (UR-LoS) channel
model and bridges the two channel models. Under the proposed
channel model, we answer the basic question “how many users in
the cell are required for RBF to achieve linear sum rate scaling
with respect to (w.r.t.) the number of transmit antennas?”

I. INTRODUCTION

Channel estimation and CSI feedback induce significant sys-
tem overhead in multi-user (MU) MIMO downlink. To over-
come the difficulty, the random beamforming (RBF) method
was proposed in [1]. In this method, the base station (BS)
picks a set of random orthogonal beams, selects a user that
has the largest signal-to-interference-plus-noise ratio (SINR)
for each random beam, and then simultaneously transmits data
streams to the selected users with the associated set of random
orthogonal beams. Thus, the RBF method eliminates the full
CSI feedback but yields reasonable performance with partial
CSI (scalar SINR not CSI) feedback only by exploiting the
MU gain in the network. Due to such advantages, RBF and the
associated MU gain have been investigated extensively over
the last decade [1]–[5]. However, most of the performance
analysis of RBF was performed under the rich scattering
channel model that assumes independent Rayleigh fading
for each element of the channel vector. Although this rich
Rayleigh fading MIMO channel model is reasonable for small-
scale MIMO systems at low frequency bands, the channel
model is not suitable for large-scale MIMO systems in the
mm-wave band, where the number of propagation paths is
very few due to the quasi-optical nature of propagation in the
mm-wave band [6], [7].
Recently, to overcome the difficulty in channel estimation

in mm-wave large MIMO downlink [8]–[10], in [3] Lee et al.
considered the RBF method in mm-wave MIMO downlink
and analyzed its performance under the uniform random
line-of-sight (UR-LoS) channel model which well captures
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the quasi-optical propagation characteristics in the mm-wave
band [6], [7]. They showed very different behaviors of the
RBF method∗ under the UR-LoS channel model from those
under the conventional i.i.d. Rayleigh fading MIMO channel
model. Explicitly, under the i.i.d. Rayleigh fading MIMO
channel model, Sharif and Hassibi showed that the RBF sum
rate RRBF in a K-user multiple-input single-output (MISO)
downlink system with M transmit antennas scales as [1]

RRBF ∼K

{
M log logK, as K → ∞, for fixed M,
cM, as K → ∞, for M = O(logK),

(1)
where x ∼K y indicates that limK→∞ x/y = 1, and c is a
positive constant. Furthermore, they showed [1]

lim
K→∞

RRBF

M
= 0, (2)

provided that limK→∞
logK
M = 0, i.e., K = o(ec

′M ) for
some constant c′. That is, if linear sum rate scaling w.r.t.
the number of antennas is desired by the RBF scheme, a
number of users exponentially increasing as a function of
the number of transmit antennas is required in the cell. This
result is quite pessimistic for the RBF scheme to be used in
massive MIMO [5], [11]. However, Lee et al. recently showed
that sum rate scaling arbitrarily close to the linear behavior
w.r.t. the number of transmit antennas is possible only with
a linearly-increasing number of users w.r.t. the number of
transmit antennas in the cell for the RBF scheme under the
UR-LoS channel model [3]. Their result sheds an optimistic
prospect for the RBF scheme to be used in mm-wave massive
MIMO. However, as the i.i.d. Rayleigh MIMO channel model
is an extreme channel model, the UR-LoS channel model is
another extreme channel model considering only one single
LoS propagation path. The goal of the current paper is to
investigate the performance of the RBF (or RDB) scheme
under a more general channel model that can capture multiple
propagation paths from the BS to each user in the cell.

Notation: Vectors and matrices are written in boldface with
matrices in capitals. All vectors are column vectors. For a
matrix A, AH and AT indicate the conjugate transpose and

∗Under the UR-LoS channel model, orthogonal beams are constructed
based on beam directions. So, they named the scheme as randomly-directional
beamforming (RDB).
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Fig. 1. The proposed uniform random multipath (UR-MP) channel model
(L = 3): The uniform randomness is in the arrival-of-departure angle domain.

transpose ofA, respectively. IM is theM×M identity matrix.
x ∼ CN (μ,Σ) means that random vector x is complex
Gaussian distributed with mean μ and covariance matrix Σ,
and θ ∼ Unif(a, b) means that θ is uniformly distributed for
θ ∈ [a, b). E[·] denotes statistical expectation. ι = √−1.

II. SYSTEM MODEL

We consider a MU-MISO downlink system consisting of a
BS equipped with a uniform linear array (ULA) ofM transmit
antennas and K single-antenna users. We consider the RDB
scheme in this MU-MISO system which chooses M users
among the K users in the cell and broadcasts independent
data streams to the M selected users.
The received signal at user k is given by

yk =
√
ρgH

k wkxk +
√
ρ
∑
j �=k

gH
k wjxj + nk, (3)

where gk,wk, xk, and nk ∼ CN (0, 1) are the channel
vector, unit-norm beamforming vector, transmitted symbol,
and additive noise for user k, respectively. Here, we assume
xk ∼ CN (0, 1) and equal power allocation for each stream.
Thus, ρ = Pt

M is the average signal-to-noise ratio (SNR), where
Pt is the total transmit power at the BS.

A. The Proposed Channel Model

Since our goal in this paper is to analyze the performance
of RDB under a general channel model between the UR-LoS
and i.i.d. Rayleigh fading MIMO channel models, we propose
a new channel model that can capture both channel models
and connect the two extreme channel models, by extending
the UR-LoS channel model. In the proposed channel model,
each channel vector gk is given by

gk =

√
M

L

L∑
i=1

αk,ia(θk,i), (4)

where L is the number of multiple paths; αk,i
i.i.d.∼ CN (0, 1)

and θk,i
i.i.d.∼ Unif[−1, 1] are the path gain and normalized

angle-of-departure (AoD)† of the i-th path for channel vector
k, respectively; and a(θ) is the normalized array steering
vector given by

a(θ) =
1√
M

[1, e−ιπθ, · · · , eιπ(M−1)θ]T . (5)

Here, the normalized AoD θ ∈ [−1, 1] is related to the physical
AoD φ ∈ [−π/2, π/2] as

θ =
2d sin(φ)

λ
,

where d and λ are the distance between two adjacent antenna
elements and the carrier wavelength, respectively. We assume
that d

λ = 1
2 in this paper. Note that the channel vector gk in

the proposed channel model is the sum of L uniform random
multi-paths (UR-MP) with complex Gaussian gains. Thus, we
refer to this channel model as the uniform random multi-path
(UR-MP) channel model. Note that the UR-MP channel model
reduces to the widely-considered conventional channel models
by controlling L.

Case i) The case of L = 1: In this case, the proposed
channel model is expressed as

gk =
√
Mαk,1a(θk,1), (6)

which is the UR-LoS channel model considered in [3], [7].
Case ii) The case of L → ∞ for fixed M : In this case, by

the law of large numbers (LLN), we have

gk → hk, as L → ∞ (7)

where hk ∼ CN (0, IM ). That is, the proposed channel model
converges to the i.i.d. Rayleigh fading MIMO channel model
when L tends to infinity for fixed M .

In order to consider the massive MIMO asymptote as in
mm-wave MIMO systems with highly-directional beamform-
ing with largeM , we need to consider the case that the number
M of transmit antennas tends to infinity. In case of M → ∞,
the condition that L → ∞ is not sufficient for the UR-MP
channel model to converge to the i.i.d. Rayleigh fading channel
model. Thus, we consider the following channel model:

Definition 1 (The UR-MP channel model with parameter β):
The UR-MP channel model with parameter β is defined as
the channel model (4) with L = Mβ for some β ∈ [0,∞).

In the UR-MP channel model with parameter β, the param-
eter β determines the richness in the number of multi-paths
w.r.t. the number of transmit antennas. The following theorem
provides the behavior of the channel model depending on β.

Theorem 1: The UR-MP channel model with parameter β
converges to the i.i.d. Rayleigh fading MIMO channel model,
as M,L → ∞, when β > 1, i.e.,

gk → hk, (8)

†Since we consider the MISO case, AoD matters. We assume that there
exists a scatter or reflector at each AoD included in the model (4) to generate
a propagation path from the BS and user k at that AoD.
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where hk ∼ CN (0, IM ). On the other hand, the UR-MP
channel model with parameter β does not converges to the
i.i.d. Rayleigh fading MIMO channel model, as M,L → ∞,
when 0 ≤ β < 1. In this case, the covariance matrix of the
channel vector is not of full rank.

Proof: Proof is omitted due to space limitation.

Note that the UR-MP channel model is general to include
the UR-LoS channel model by setting β = 0 and the i.i.d.
Rayleigh fading channel model by setting β > 1. When
β ∈ (0, 1), the channel model lies somewhere in-between the
two extreme channel models. The parameter β monotonically
represents the richness in the number of multi-paths in the
propagation between the BS and the considered user.

III. PERFORMANCE ANALYSIS
In this section, we briefly explain the RDB scheme in [3]

which is a special case of RBF of [1]. Then, we analyze the
performance of RDB under the UR-MP channel model with
parameter β for 0 < β < 1. Specifically, we identify how
many users K are required to achieve linear scaling of the
RDB throughput w.r.t. the number M of antennas under the
UR-MP channel model.
In RBF, the BS chooses a set of random orthonormal beam

vectors {wb}Mb=1 that forms an orthonormal basis of CM ,
selects a user that has the maximum SINR for each random
beam, and transmit M independent data streams to the M
selected users. Then, the expected sum rate of the RBF method
is given by

Rsum =

M∑
b=1

E [log (1 + SINRκb,b)] =

M∑
b=1

Rκb
, (9)

where
SINRk,b =

ρ|gH
k wb|2

1 + ρ
∑

b′ �=b |gH
k wb′ |2 (10)

and κb = argmax1≤k≤K SINRk,b. In the case of RDB
scheme, the M transmit beams are constructed with different
beam directions. That is, the BS chooses a special orthonormal
basis {wb}Mb=1 as

wb = a(ϑb) = a

(
ϑ+

2(b− 1)

M

)
, for b = 1, · · · ,M,

(11)
where a(·) is defined in (5), and ϑ ∼ Unif[−1, 1] or equiva-
lently ϑ ∼ Unif[−1, 1+ 2

M ] is a random offset value. That is,
the RDB uses M beams equi-spaced in the normalized angle
domain with a uniform random offset. Note that in the RDB
scheme, the inter-beam interference results when the user is
not located at the exact boresight angle but located somewhere
in-between equi-spaced boresight beam angles.
Before we investigate the RDB performance for the UR-

MP channel model with parameter β, we consider the UR-MP
channel model with finite and fixed L regardless of M .

Theorem 2: For K = M q with q = 1 + ε and arbitrary
ε > 0, under the UR-MP model with finite and fixed L, an

asymptotic lower bound on the per-user rate Rκb
for fixed

total transmit power Pt = 1 is given by

Rκb
= E

[
log

(
1 +

M−1|gH
κb
a(ϑb)|2

1 +M−1
∑

b′ �=b |gH
κb
a(ϑb′ )|2

)]

� c > 0, (12)

where x � y indicates limM→∞
x
y ≥ 1, and c is a positive

constant value.

Proof: Let A be the event that there exists a user k′ such
that θk′,1 ∈ [ϑb − 1

M , ϑb +
1
M ), |αk′,1| ≥ L, and |αk′,i| ≤ 1,

θk′,i /∈ [ϑb − 1
M , ϑb +

1
M ) for i 	= 1. Note that we have for

any k, i

Pr

{
θk,i ∈

[
ϑb − 1

M
,ϑb +

1

M

)}
=

1

M
(13)

Pr{|αk,i| ≥ L} = e−L2

. (14)

Using the above, we compute the asymptotic probability of
the event A as follows:

Pr{A} = 1− Pr{Ac}

= 1−
(
1− 1

M
e−L2

(
(1− e−1)(1− 1

M
)

)L−1
)K

= 1−
(
1−O

(
1

M

))Mq

= 1− eM
q log(1−O( 1

M ))

(a)
= 1− e−Mq−1+O( 1

M2−q ) → 1 (15)

as M → ∞, where (a) follows from log(1 − x) = −x +
O(x2) for small x. Now, from the fact that E[f(X)] ≥
p(A)E[f(X |A)] for a non-negative function f(X), Rκb

can
be lower bounded by

Rκb
≥ Pr{A}E

[
log

(
1 +

1
M
|gH

κb
a(ϑb)|2

1 + 1
M

∑
b′ �=b |gH

κb
a(ϑb′)|2

)∣∣∣∣A
]
(16)

The second term in the right-hand side (RHS) of (16) can
further be bounded as

E

[
log

(
1 +

1
M
|gH

κb
a(ϑb)|2

1 + 1
M

∑
b′ �=b |gH

κb
a(ϑb′)|2

) ∣∣∣∣A
]

(a)

≥ E

⎡
⎢⎢⎢⎣log

⎛
⎜⎜⎜⎝1 +

1
L
|∑L

i=1 α
∗
k′,ia(θk′,i)

H
a(ϑb)|2

1 + 1
L

∑
b′ �=b

∣∣∣∣ L∑
i=1

α∗
k′,i

a(θk′,i)Ha(ϑb′)

∣∣∣∣
2

⎞
⎟⎟⎟⎠

∣∣∣∣A
⎤
⎥⎥⎥⎦

(b)

≥ E

[
log

(
1 +

1
L
(|αk′,1| − (L− 1))2 4

π2

1 + 1
L
(|αk′,1|2 + (L− 1))Lπ2

3

) ∣∣∣∣A
]

(c)

≥ log

(
1 +

4
Lπ2

1 + (L2+L−1)π2

3

)
=: c > 0, (17)

where (a) follows from the fact that we compute the rate of
user k′ instead of user κb; (b) holds by the two facts

|
L∑

i=1

αk′,ia(θk′,i)
Ha(ϑb)|2 ≥ (|αk′,1| − (L− 1))2

4

π2
(18)
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and

∑
b′ �=b

∣∣∣∣∣
L∑

i=1

αk′,ia(θk′,i)
Ha(ϑb′)

∣∣∣∣∣
2

≤ (|αk′,1|2 + (L − 1))
Lπ2

3
.

(19)
(See Appendix.); and (c) follows from the fact that the SINR
term is minimized when |αk′,1| = L (due to |αk′,1| ≥ L).
Therefore, by using (16) with the fact that Pr{A} → 1 and
(17), we have Rκb

� c > 0.

Theorem 2 states that under the UR-MP channel model
with finite L, linear sum rate scaling w.r.t. the number of
transmit antennas by the RDB scheme is achievable when
the number of users in the cell increases arbitrarily close to
linearly w.r.t. the number of transmit antennas. This result is
not much different from that under the UR-LoS channel model
provided in [3]. Thus, the RDB scheme is promising for mm-
wave massive MIMO systems even for multiple propagation
paths if the number of multi-paths is finite.
Now, consider the RDB performance under the UR-MP

channel model with parameter β. In this case, we have the
following theorem.

Theorem 3: Under the UR-MP channel model with param-
eter β with L = Mβ and β ∈ (0, 1), for K = MLq and
q ≥ 3L, an asymptotic lower bound on the per-user rate Rκb

for fixed total transmit power Pt = 1 is given by

Rκb
= E

[
log

(
1 +

M−1|gH
κb
a(ϑb)|2

1 +M−1
∑

b′ �=b |gH
κb
a(ϑb′ )|2

)]

� c� > 0 (20)

and c� is a positive constant value.

Proof: Proof is similar to the proof of Theorem 2. Without
loss of generality, we assume ϑb = 0. Let A� be the event that
there exists a user k� such that |θk�,1| ∈ [0, 1

M ), |αk�,1| ∈
[
√
L,

√
2L], and for i 	= 1, |θk�,i| ∈ [ 1

M + (i−1)
L , 1

M + i
L ) and|αk�,i| ≤ 1. Now, we compute the asymptotic probability of

the event A� as follows:

Pr{A�} = 1−
(
1− 1

M
(e−L − e

−2L)

(
(1− e

−1)
1

L

)L−1
)K

≥ 1−
(
1− 1

Me2LLL

)K

= 1− e
eq log L+log M log

(
1− 1

e2L+L log L+logM

)

= 1− e
−eq log L−2L−L log L+o(1) → 1 (21)

as M → ∞. Here we used log(1 − x) = −x + O(x2)
for small x and the condition q ≥ 3L. To apply similar
techniques used in (16) and (17), we should find a lower
bound of |∑L

i=1 αk�,ia(θk�,i)
Ha(ϑb)|2 and an upper bound

of
∑

b′ �=b

∣∣∣∑L
i=1 αk�,ia(θk�,i)

Ha(ϑb′)
∣∣∣2. By Lemma 2 in [3],

for all b,

|
∑
i�=1

αk�,ia(θk�,i)
Ha(ϑb)| ≤

∑
i�=1

|αk�,i||a(θk�,i)
Ha(ϑb)|

≤
∑
i�=1

1

M(i− 1)/L

≤ β logM

M1−β
. (22)

Therefore, we have

|
L∑

i=1

αk�,ia(θk�,i)
Ha(ϑb)|2 ≥

(
2

π
M

1
2
β − β logM

M1−β

)2

→ 4

π2
Mβ , (23)

as M → ∞. Also, we can re-arrange the indices of {ϑb′}b′ �=b

in the order of closeness to ϑb with the new indices {j}. Then
we have by Lemma 2 in [3],

|a(θk�,1)
Ha(ϑ2j)|, |a(θk�,1)

Ha(ϑ2j−1)| ≤ 1

2j
(24)

Therefore, by (22), (24) and |αk�,1| ≤
√
2L, we have

∑
j �=b

∣∣∣∣∣
L∑

i=1

αk�,ia(θk�,i)
H
a(ϑj)

∣∣∣∣∣
2

≤
∑
j �=b

∣∣∣∣M 1
2
β · 1√

2j
+

β logM

M1−β

∣∣∣∣
2

≤
M/2∑
j=1

2

∣∣∣∣M 1
2
β · 1

j

∣∣∣∣
2

+ 4

∣∣∣∣β logM

M1−β

∣∣∣∣
2

∼ π2

3
M

β (25)

Therefore, by using (21), (23), and (25), we have

Rκb
� log

(
1 +

4
π2

1 + π2

3

)
=: c� > 0 (26)

Theorem 3 states that linear sum rate scaling by the RDB
scheme is achievable under the UR-MP channel model with
parameter β ∈ (0, 1) when K = MLq and q ≥ 3L. Consider
the condition of K = MLq and q ≥ 3L. By applying L =
Mβ , we have

K = MLq = M(Mβ)3M
β

. (27)

Taking logarithm on both sides of (27), we have

logK = (1 + 3βMβ) logM, 0 < β < 1. (28)

When β = 0, the sufficient condition reduces to logK =
logM , which coincides with the previous result for the UR-
LoS channel model. On the other hand, when 0 < β < 1, we
have

Θ(logK) = Mβ logM. (29)

Notice the difference between the two respective sufficient
conditions (1) (i.e., M = O(logK)) and (29) for linear
sum rate scaling for the RBF or RDB scheme under the
i.i.d. Rayleigh fading and UR-MP with parameter β channel
models. When β ↑ 1, i.e., the UR-MP channel model with
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parameter β converges to the i.i.d. Rayleigh fading channel
model by Theorem 1, the obtained result is a bit loose than
the result of M = O(logK) in [1]. However, when β < 1,
we have Mβ logM

M → 0 as M → ∞.
IV. CONCLUSION

In this paper, we have examined the performance of the
RDB scheme under the newly proposed UR-MP channel
model that captures the UR-LoS and Rayleigh fading channel
models and connects the two extreme models. We have shown
that linear scaling of the RDB throughput w.r.t. the numberM
of transmit antennas can be achieved under the UR-MP model
with a finite and fixed number L of multi-paths, if K = M1+ε

for any ε > 0, as M → ∞, and that linear scaling of the RDB
throughput w.r.t. M can be achieved under the UR-MP model
with L = Mβ , if Θ(logK) = Mβ logM , as M → ∞, for
0 < β < 1. Thus, in sparse multi-path channels the number
of required users for RDB to achieve linear sum rate scaling
w.r.t. M is far less than that required in i.i.d. Rayleigh fading
MIMO channels.

APPENDIX

Proof of eq. (18): Consider the value∣∣∣∣∣
L∑

i=1

αk′,ia(θk′,i)
Ha(ϑb)

∣∣∣∣∣
=

∣∣∣∣∣∣αk′,1a(θk′,1)
Ha(ϑb) +

∑
i�=1

αk′,ia(θk′,i)
Ha(ϑb)

∣∣∣∣∣∣ . (30)

Here, we note that |αk′,1| ≥ L and |a(θk′,1)
Ha(ϑb)| ≥ 2

π due
to |θk′,1 − ϑb| ≤ 1

M [3]. For i 	= 1, we have |αk′,i| ≤ 1, and
|a(θk′,i)

Ha(ϑb)| ≤ |a(θk′,1)
Ha(ϑb)| because of |θk′,i−ϑb| ≥

1
M [3]. Therefore, the magnitude of the first term in (30) is
greater than the magnitude of the second term in (30). So (30)
is minimized when their phases are opposite. Hence we have
the lower bound of (30), given by∣∣∣∣∣

L∑
i=1

αk′,ia(θk′,i)
Ha(ϑb)

∣∣∣∣∣
≥ ∣∣αk′,1a(θk′,1)

Ha(ϑb)
∣∣−

∣∣∣∣∣∣
∑
i�=1

αk′,ia(θk′,i)
Ha(ϑb)

∣∣∣∣∣∣
≥ |αk′,1||a(θk′,1)

Ha(ϑb)| −
∑
i�=1

|αk′,i|
∣∣a(θk′,i)

Ha(ϑb)
∣∣

≥ (|αk′,1| − (L− 1)) |a(θk′,1)
Ha(ϑb)|

≥ (|αk′,1| − (L− 1))
2

π

which concludes the proof. �

Proof of eq. (19): We have

∑
b′ �=b

∣∣∣∣∣
L∑

i=1

αk′,ia(θk′,i)
H
a(ϑb′)

∣∣∣∣∣
2

≤
M∑

b′=1

∣∣∣∣∣
L∑

i=1

αk′,ia(θk′,i)
H
a(ϑb′)

∣∣∣∣∣
2

≤
M∑

b′=1

(
L∑

i=1

|αk′,i| ·
∣∣∣a(θk′,i)

H
a(ϑb′)

∣∣∣
)2

(a)

≤
M∑

b′=1

L

L∑
i=1

(
|αk′,i| ·

∣∣∣a(θk′,i)
H
a(ϑb′)

∣∣∣)2

(b)

≤ L

L∑
i=1

|αk′,i|2
M∑

b′=1

∣∣∣a(θk′,i)
H
a(ϑb′)

∣∣∣2
(c)

≤ L

(
L∑

i=1

|αk′,i|2
)

π2

3

≤ (|αk′,1|2 + (L− 1)
) Lπ2

3

where (a) follows from Jensen’s inequality for the convex
function f(x) = x2; (b) holds by interchanging the order of
summation; (c) follows from the fact that

M∑
b′=1

|a(θk′,i)
Ha(ϑb′)|2 ≤

M∑
b′=1

1

M2|θk′,i − ϑb′ |2

≤
M/2∑
j=1

2

j2
≤ π2

3

which is obtained by Lemma 2 in [3], where the second
equality is obtained by re-arranging the indices of {ϑb′} and
applying a similar technique used in eq. (66) of [3]. �
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