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Abstract—In this paper, the multi-user (MU) gain and the im-
pact of training are investigated for random beamforming (RBF)
in highly-directional millimeter-wave (mm-wave) MU multiple-
input multiple-output (MIMO) downlink which is considered as
one of the major technological thrusts for 5G communications.
To do so, the uniform random line-of-sight (UR-LoS) channel
model suitable for highly-directional mm-wave radio propagation
channels is adopted. Based on the UR-LOS channel model, the
performance of RBF and the MU gain in mm-wave MIMO
systems are analyzed. It is shown that there exists a transition
point on the number of users relative to the number of trans-
mit antennas for non-trivial performance of the RBF scheme.
Furthermore, in case of training, the number of training beams
relative to the number of antennas required for asymptotically
good performance of the RBF scheme is specified when the
number of users relative to the number of antennas is given.
The provided results in this paper yields insights into the MU
gain with partial CSI and the amount of required training in
highly-directional mm-wave channels.

I. INTRODUCTION

Random beamforming with partial CSI was proposed for
MU-MIMO downlink to circumvent the problem of channel
estimation and feedback of channel state information (CSI)
in [3]. In this scheme, the transmitter picks a random beam
or a set of random orthogonal beams for data transmission
and exploits the MU gain in the network to yield reason-
able performance based only on partial CSI. Due to such
advantages, random beamforming and the associated MU gain
have been investigated extensively during the last decade [3]–
[7]. However, most of analysis was performed under rich
scattering environments which are characteristics of low radio
frequency bands. Recently, mm-wave MIMO operating in the
band of 30-300GHz is rising as a candidate technology for
5G wireless communications to meet exponentially-growing
wireless capacity demands, and there are several challenging
issues to realize mm-wave MIMO systems. One of such
issues is to estimate mm-wave MIMO CSI [8]–[10]. The radio
propagation in the mm-wave band has quasi-optical nature
with large path loss and very few multi-paths, and the MIMO
channel in the mm-wave band is sparse in the arrival angle
domain [8], [9]. Thus, it is difficult to identify the CSI between
the transmitter and an arbitrary user in the network with a
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highly-directional training beam compensating for the large
path loss in the mm-wave band. Identifying CSI requires
sophisticated algorithms and heavy training overhead [8]–[10],
and feedback of the identified CSI is another issue.
In this paper, to circumvent such difficulties, we consider

random beamforming with partial CSI for mm-wave MU-
MIMO downlink and investigate its performance and asso-
ciated MU gain in the mm-wave MIMO environment with
highly-directional quasi-optical propagation characteristics. To
analyze the performance of random beamforming in mm-wave
MU-MIMO downlink, we adopt the uniform random line-of-
sight (UR-LoS) channel model which well captures the highly-
directional propagation characteristics in the mm-wave band
[11], [12]. Under this channel model, we reveal a transition
behavior of the random beamforming performance and the
interplay between the number of users and the amount of
training for random beamforming in higly-directional mm-
wave MU-MIMO downlink. The results in this paper provide
insights into the MU gain with partial CSI in highly-directional
mm-wave MU-MIMO downlink systems.

Notations and Organization: In this paper, we will use
standard notational conventions. Vectors and matrices are writ-
ten in boldface with matrices in capitals. For a matrix A, AT ,
AH , and tr(A) indicate the transpose, conjugate transpose, and
trace of A, respectively. The notation x ∼ CN (0, 1) means
that x is the complex Gaussian random variable with mean 0
and variance 1, and θ ∼ Unif[a, b] means that θ is uniformly
distributed over the range [a, b]. E[·] denotes the expectation.
ι :=

√−1 and Z is the set of integers.

II. SYSTEM MODEL

We consider a single-cell mm-wave MU-MIMO downlink
system where a transmitter equipped with a uniform linear
array (ULA) of M transmit antennas communicates with K
single-antenna users. The received signal at user k is then
given by

yk = gH
k x+ nk, k = 1, 2, · · · ,K, (1)

where gk is the channel vector of user k, x is the transmitted
signal vector subject to a power constraint tr(E{xxH}) ≤ Pt,
and nk ∼ CN (0, 1) is the additive noise at user k.
Due to the highly directional and quasi-optical nature of

electromagnetic wave propagation in the mm-wave band, a
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typical mm-wave channel has very few multi-path compo-
nents. In general, a mm-wave channel is composed of a line-
of-sight (LoS) propagation component and possibly a set of
few single-bounce non-LoS (NLoS) components [13]. Hence,
the mm-wave channel of user k can be modeled as [11]

gk = αk

√
Ma(θk) +

∑
i

αk,i

√
Ma(θk,i), (2)

where αk and θk are the complex gain and normalized direc-
tion of the LoS path for user k, {αk,i} and {θk,i} represent
the complex gains and normalized directions of NLoS paths
for user k, and a(θ) is the array steering vector given by

a(θ) =
1√
M

[1, e−ιπθ, · · · , e−ιπ(M−1)θ]T . (3)

Here, the normalized direction θ is related to the physical angle
of departure φ ∈ [−π/2, π/2] as θ = 2d sin(φ)

λ , where d and λ
are the distance between two adjacent antennas and the carrier
wavelength, respectively. We simply assume d

λ = 1
2 . Note that

the array steering vector in (3) has unit norm and hence the
normalization factor

√
M is included in (2).

Since the path loss of NLoS components is much larger
than that of the LoS component, i.e., the power |αk,i|2
associated with NLoS paths is typically 20dB weaker than
the LoS component |αk|2 [13], the effect of NLoS links is
negligible for mm-wave channels with LoS links. Hence, we
focus on LoS channels here, i.e., αk,i = 0 for ∀i [11], [14].
Furthermore, we assume that the gain associated with the
LoS link is Gaussian-distributed, i.e., αk

i.i.d.∼ CN (0, 1) and
that the normalized direction θk for each user k is i.i.d. with
θk

i.i.d.∼ Unif[−1, 1]. From the above assumptions, the mm-
wave channel model (2) can be re-written as

gk = αk

√
Ma(θk), (4)

for k = 1, · · · ,K. This channel model is the uniform random
line-of-sight (UR-LoS) model already considered for mm-
wave MIMO in [11], [12]. In this paper, we adopt the UR-LoS
model to make analysis tractable and gain insights into RBF
in highly-directional MIMO channel environments.

III. RANDOMLY-DIRECTIONAL BEAMFORMING IN
MM-WAVE MIMO

In highly-directional mm-wave MIMO, the randomness in
random beamforming lies in direction. Thus, we first consider
the following randomly-directional beamforming (RDB) strat-
egy in downlink transmission.
Step 1) During the training period, the transmitter chooses

a normalized direction ϑ randomly and broadcasts the beam
x in (1) given by

x = a(ϑ) (5)

where ϑ ∼ Unif[−1, 1]. (We set Pt = 1 for simplicity here.)
Step 2) Each user k in the cell computes and feedbacks

the average received power∗ |ȳk|2 (≈ |gH
k x|2 + 1

Ns
) to the

transmitter, where |gH
k x|2 = |αk|2 ·M |a(θk)Ha(ϑ)|2.

∗To average out the noise effect, each user can exploit multiple time
samples during the training period for the feedback value |ȳk|2, where ȳk is
the sample average.

Step 3) After the feedback period, the transmitter selects the
user that has the maximum received signal power and transmits
a data stream with the beamforming vector x in (5) to the user.
The considered random beamforming requires partial CSI,

i.e., not the full CSI gk but a real number capturing the
channel’s alignment to a given random transmit beam from
each user. The expected rate R1 of the RDB scheme is given
by

R1 = E

[
log

(
1 + max

1≤k≤K
|αk|2M |a(θk)Ha(ϑ)|2

)]
. (6)

To gain insights, first consider the RDB rate in the case of
K = 1. In this case, we have an upper bound on R1 from
Jensen’s inequality, given by

R1 = E
[
log

(
1 + |α1|2M |a(θ1)Ha(ϑ)|2)]

≤ log
(
1 + E

[|α1|2M |a(θ1)Ha(ϑ)|2]) = log 2. (7)

The last equality holds by E[|α1|2] = 1 since |α1|2 has a chi-
square distribution with degree-of-freedom two, i.e., |α1|2 ∼
χ2(2) and

E[M |a(θ1)Ha(ϑ)|2] = 1

M
E

⎡
⎣
∣∣∣∣∣
M−1∑
n=0

e−ιπn(ϑ−θ1)

∣∣∣∣∣
2
⎤
⎦

=
1

M
E

⎡
⎢⎣M +

∑
n,m
n�=m

e−ιπ(m−n)(ϑ−θ1)

⎤
⎥⎦

= 1. (8)

The last step is valid since E[e−ιπ(m−n)(ϑ−θ1)] =
1
2

∫ 1

−1
e−ιπ(m−n)θ̃kdθ̃k = sinπ(m−n)

π(m−n) = 0 for any (m − n) ∈
Z\{0} [12]. † Hence, the rate of the RDB scheme for K = 1
is insignificant irrespective of the value of M . In this case,
one should acquire the CSI of the single user to achieve the
rate with perfect CSI given by

log(1 + |α1|2M) ∼ logM,

and the channel estimation is important [8]–[10]. (In this paper,
x ∼ y indicates limM→∞ x/y = 1.)

IV. ASYMPTOTIC ANALYSIS OF THE RDB RATE
In the previous section, we have seen that the performance

of the RDB scheme is trivial when K = 1. Now consider the
case where K becomes large. Consider the term |a(θk)Ha(ϑ)|
in the right-hand side (RHS) of (6):

|a(θk)Ha(ϑ)| = 1

M

∣∣∣∣∣
M−1∑
n=0

e−ιπn(ϑ−θk)

∣∣∣∣∣ =
1

M

∣∣∣∣1− e−ιπ(ϑ−θk)M

1− e−ιπ(ϑ−θk)

∣∣∣∣
=

1

M

∣∣∣∣∣
sin π(ϑ−θk)M

2

sin π(ϑ−θk)
2

∣∣∣∣∣ =: FM (ϑ− θk), (9)

which is called the Fejér kernel FM (·) of order M [15]. From
(9), for fixed ϑ and θk we have |a(θk)Ha(ϑ)| → 0 and thus
R1 → 0 asM → ∞. However, if we can find user k such that

†We can regard θ̃k := ϑ− θk ∼ Unif[−1, 1] in case that ϑ− θk appears
as eιπl(ϑ−θk) for any integer l due to the periodicity of period two.
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ϑ−θk = Δ
M for some Δ > 0, then |a(θk)Ha(ϑ)| →

∣∣∣ 2 sin πΔ
2

πΔ

∣∣∣
as M → ∞ and a nontrivial rate is achievable by the RDB
scheme [12].
In this section, we analyze the asymptotic performance

of the RDB scheme in a massive MIMO asymptote, i.e.,
M → ∞. It is difficult to directly compute R1 in (6) because
several random variables in the integral in (6) are intertwined.
To circumvent this difficulty, we apply asymptotic techniques
to bound R1 by first assuming that αk = 1 for all k and
focusing on the term Zk := M |a(θk)Ha(ϑ)|2 in (6). Then, we
will take into account the term αk ∼ CN (0, 1) in the analysis
later. We first provide the key lemma in the following.

Lemma 1: [1] For any constant p ∈ (−1, 1) and sufficiently
large M , we have

1

2πM (1+p)/2
< Pr{Zk > Mp} <

1
π
4M

(1+p)/2
. (10)

That is, Pr{Zk > Mp} = Θ
(

1
M(1+p)/2

)
.

Proof: From (9), the following two events are equivalent:

Zk = M |a(θk)Ha(θ)|2 > Mp

⇔
∣∣∣∣∣
sin πθ̃kM

2

sin πθ̃k
2

∣∣∣∣∣ > M (1+p)/2, (11)

where θ̃k ∼ Unif[−1, 1]. Since the numerator
∣∣∣sin πθ̃kM

2

∣∣∣ ≤ 1

and M (1+p)/2 > 1 for p ∈ (−1, 1), a necessary condition to
satisfy (11) is that the denominator in the left-hand side (LHS)
of (11) should be upper bounded as∣∣∣∣∣sin

πθ̃k
2

∣∣∣∣∣ <
1

M (1+p)/2
. (12)

For given p ∈ (−1, 1), the upper bound in the RHS of (12)
tends to zero asM → ∞. Therefore, by the fact that ε

2 < sin ε
for small ε > 0, (12) implies

|θ̃k| < 1
π
4M

(1+p)/2
(13)

for sufficiently large M . Therefore, we have

Pr{Zk > Mp} < Pr

{
|θ̃k| < 1

π
4M

(1+p)/2

}
=

1
π
4M

(1+p)/2
,

since θ̃k ∼ Unif[−1, 1].
Now we consider the lower bound in (10). From the fact

that sin ε < ε for ε > 0, we have∣∣∣∣∣sin
πθ̃k
2

∣∣∣∣∣ <
1

2M (1+p)/2
(14)

if
π

2
|θ̃k| < 1

2M (1+p)/2
. (15)

If the following equation holds in addition to (15) (implying
(14)) ∣∣∣∣∣sin

πθ̃kM

2

∣∣∣∣∣ ≥
1

2
, (16)

then (11) is satisfied. But, (16) is satisfied when

|θ̃k| ∈
{[

1

3M
+

2k

M
,

5

3M
+

2k

M

]
, k = 0, 1, 2, · · · ,

}
. (17)

Note that
∣∣∣sin πθ̃kM

2

∣∣∣ in (16) has period 2
M and the length of

one interval per period in the set (17) is 4
3M . Hence, the set

(17) occupies 2
3 length of each period of

2
M . Since the term

1
M(p+1)/2 for given p ∈ (−1, 1) converges to zero slower than
1
M as M → ∞, multiple discontinuous intervals in the set
(17) are contained in the set defined by (15), and the length
of the intersection of the sets (15) and (17) is lower bounded
by 2

3

(
1

πM(1+p)/2 − 2
M

)
, where minus 2

M takes into account
the impact of the last possibly partially overlapping interval.
Therefore, we have

Pr{Zk > Mp} ≥ 2

3

(
1

πM (1+p)/2
− 2

M

)
(18)

>
1

2
· 1

πM (1+p)/2
, (19)

for M is sufficiently large. This concludes the proof. �

Based on Lemma 1 we now have the following theorem
regarding the asymptotic performance of the RDB scheme.
Theorem 1: [1] For K = Mq and q ∈ (0, 1), we have

asymptotic upper and lower bounds for R1 in (6) in the case
of αk = 1 for all k as

log(1 +M2q−1−ε) � E [log(1 + Z)] � log(1 +M2q−1+ε)
(20)

for any sufficiently small ε > 0, where Z = max
1≤k≤K

Zk and
x � y means limM→∞ x/y ≤ 1.
Proof: The probability of the event {Z > Mp} for any

p ∈ (−1, 1) can be expressed as

Pr
{
max

k
Zk > M

p
}
= 1− Pr{Zk ≤ M

p}K (21)

= 1−

(
1−

1

cM (1+p)/2

)K

, (22)

where the second equality holds by Lemma 1 (c is a constant
between π

4 and 2π). We now consider the second term in (22).
Pick p = 2q − 1 − ε for small ε > 0 such that p ∈ (−1, 1).
Then the second term is given by

(
1−

1

cM (1+p)/2

)K

=

(
1−

1

cMq− ε
2

)Mq

(23)

= e
Mq log

(
1− 1

cM
q− ε

2

)
(24)

= e
− 1

c
Mε/2+O

(
1

M2q−ε

)
(25)

→ 0 as M → ∞ (26)

where we used the fact that log(1 − x) = −x + O(x2) for
small x in the third step. Therefore, in this case, we have
Pr{Z > Mp} → 1 and thus E[log(1+Z)] can be bounded as

E[log(1 + Z)] ≥
∫ M

Mp

log(1 + z)p(z)dz

≥ log(1 +Mp)

∫ M

Mp

p(z)dz

→ log(1 +Mp), as M → ∞.
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Hence, the claim on the lower bound follows. Now pick p =
2q − 1 + ε for small ε > 0 such that p ∈ (−1, 1). Then, by
the techiques used in (23)-(25), the second term in (22) can
be computed as

(
1−

1

cM (1+p)/2

)K

= e
− 1

c
M−ε/2+O

(
1

M2q+ε

)

= 1−O

(
1

M
ε
2

)

where the second inequality holds by the identity ex = 1 +
O(x) for small x. Therefore, in this case, the probability of
the event {Z > Mp} is given by O

(
1

Mε/2

)
. Using this, we

have

E[log(1 + Z)] =

∫ M

Mp

log(1 + z)p(z)dz +

∫ Mp

0

log(1 + z)p(z)dz

≤ log(1 +M)O

(
1

M ε/2

)
+ log(1 +M

p)

→ log(1 +M
p), as M → ∞.

Hence, the claim on the upper bound follows. �

Theorem 1 states that the RDB scheme under the assump-
tion αk = 1, ∀ k has asymptotically nontrivial performance,
i.e., R1 → ∞, as M → ∞, when K = Mq with q ∈ ( 12 , 1).
When K = Mq with q ∈ (0, 1

2 ), on the other hand, the
RDB scheme has trivial performance, i.e., R1 → 0, as
M → ∞. Therefore, q = 1

2 is the transition point for the RDB
scheme under the UR-LoS channel model, which determines
the sufficiency or deficiency of MU gain. It is easy to see that

lim
M→∞

E[log(1 + Z)]

log(1 +M)
= 2q − 1, (27)

for K = Mq with q ∈ ( 12 , 1), where log(1+M) is the rate of
perfect beamforming based on perfect CSI at the transmitter.
Thus, the RDB strategy under the assumption αk = 1, ∀ k
achieves 2q−1 fraction of the exact beamforming rate based on
perfect CSI at the transmitter, when K = Mq with q ∈ ( 12 , 1).
Note that the maximum value of one for (27) is achieved if
q ↑ 1, i.e., the performance of perfect beamforming based on
perfect CSI is achieved by the RDB scheme if the number
of users increases linearly with the number M of transmit
antennas. It is also shown in [1] that the same is true for the
UR-LOS channel with αk

i.i.d.∼ CN (0, 1).

V. MULTIPLE ORTHOGONAL BEAMS: IMPACT OF
TRAINING

In this section, we consider what can be achieved by training
for the RDB scheme. To train the network, we define S random
training beams equi-spaced in the normalized angle domain as

wb = a(ϑb) = a

(
ϑ+

2(b− 1)

S

)
, for b = 1, · · · , S, (28)

where ϑ ∼ Unif[−1, 1], and the transmitter sequentially
transmits the S random beams to the downlink during the
training period. We assume that the network is synchronized
and hence each user knows the training beam index b by
looking at the corresponding training interval. Note that the
difference between the normalized angles of two adjacent
training beams is 2

S and the offset ϑ is randomly generated on

[−1, 1]. (Note from (3) that a(θ) is periodic in θ with period
2.) The equi-spaced beams are asymptotically orthogonal to
one another, i.e.,

lim
M→∞

|a(ϑb1)
Ha(ϑb2)| = 0 for b1 
= b2, (29)

if S = o(M). During the training period, each user computes
the received power for each training beam and finds the
maximum. In this way, each user knows its channel better and
better as S increases. When the training period is over, each
user feeds back the maximum of its received power values
for the S training beams and the corresponding beam index.
Then, the transmitter transmits a data stream to the user that
has maximum received power with the corresponding beam
wb. In this case, the corresponding rate RS is given by

RS = E

[
log

(
1 + max

1≤k≤K
max

1≤b≤S
|αk|

2
M |a(θk)

H
a(ϑb)|

2

)]
.

(30)
To compute the asymptotic value of RS , we first consider
the case of |αk| = 1 for all k = 1, · · · ,K as before. In this
case, RS can be lower and upper bounded asymptotically as
follows:
Theorem 2: [1] ForK = Mq , S = M 	 and any �, q ∈ (0, 1)

such that � + q < 1, we have asymptotic lower and upper
bounds on RS in the case of |αk| = 1, ∀ k as

log(1 +M
2(q+�)−1−ε) � E

[
log(1 + Z

′)
]

� log(1 +M
2(q+�)−1+ε) (31)

for any sufficiently small ε > 0, where Z ′ = maxk Z
′
k and

Z ′
k = maxb M |a(θk)Ha(ϑb)|2.
Proof: Please see [1]. �

Theorem 2 states that the multi-beam training RDB scheme
under the assumption αk = 1, ∀ k has asymptotically nontriv-
ial performance, i.e., RS → ∞, as M → ∞, when K = Mq

and S = M 	 with � + q ∈ ( 12 , 1). When � + q ∈ (0, 1
2 ),

on the other hand, the multi-beam training RDB scheme has
trivial performance, i.e., RS → 0, as M → ∞. Note that q
in Theorem 1 is replaced by q+ � in Theorem 2, and the two
theorems are the same except this. Now the role of training
for RDB is clear from Theorem 2. When the number of users
in the network is not sufficient, i.e., q < 1/2, training should
be used to enhance the RDB performance so that q+� > 1/2.
The lack of MU gain can be compensated for by training. In
the extreme case of K = 1, i.e., q = 0, � should do all the
work. Again, the performance transition point is q+ � = 1/2.
Note that we have

lim
M→∞

E[log(1 + Z ′)]

log(1 +M)
= 2(q + �)− 1. (32)

for K = Mq, S = M 	 and any �, q ∈ (0, 1) such that 1
2 <

�+q < 1, where log(1+M) is the rate of perfect beamforming
based on perfect CSI. In the case of multi-beam training RDB,
the maximum value of one for (32) can be achieved as the sum
of MU gain factor q and training factor � approaches one.
Considering the randomness in the path gain, we can further

show that for αk
i.i.d.∼ CN (0, 1) for each k

lim
M→∞

RS

E[log(1 + maxk |αk|2M)]
= 2(q + �)− 1, (33)

for K = Mq, S = M 	 and any �, q ∈ (0, 1) such that 1
2 <

�+ q < 1 [1].
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VI. NUMERICAL RESULTS
In this section, we provide some numerical results to

validate our asymptotic analysis in the previous sections. We
considered a mm-wave MU-MIMO downlink system with the
UR-LoS channel model. All the expectations in the numerical
results are average over 5000 channel realizations and we set
Pt = 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q

E
[1
+
Z
]

lo
g
(1
+
M

)

M=100,500,1000,5000,10000

Theoritical line 

Fig. 1. The ratio of the RDB rate R1 to the rate with perfect CSI E[log(1+
M)] versus q for different M [1]

We first validate the result in Section IV. Fig. 1
shows the value of E[1+Z]

log(1+M) versus q for M =
100, 500, 1000, 5000, 10000. It is seen that the curve of
E[1+Z]

log(1+M) versus q gradually converges to the theoretical line
of 2q − 1 for q > 1

2 and 0 for q ≤ 1
2 as M increases.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q

E
[1
+
Z

′
]

lo
g
(1
+
M

)

Theoretical line

� = 0.1

� = 0.3

� = 0.5
� = 0.7

Fig. 2. The ratio of the RDB rate RS to the rate with perfect CSI E[log(1+
M)] versus q for different �, when M = 1000 [1]

Next, we considered the multi-beam training RDB scheme
explained in Section V. Fig. 2 shows the ratio of the multi-
beam training RDB rate RS to the rate with perfect CSI versus
q for different �, whenM = 1000. It is seen that the simulation
curves roughly match the theoretical lines.

VII. CONCLUSION
We have considered RDB with partial CSI to resolve the

difficulties of channel estimation and CSI feedback in mm-
wave MU-MIMO downlink, and examined the associated MU
gain and the impact of training, using asymptotic analysis,
based on the UR-LoS channel model which is suitable for
radio channels in the mm-wave band. We have shown that
there exists a performance transition point in the number
of users (relative to the number of antennas) for non-trivial
performance of the RDB scheme and have revealed the inter-
play between the MU gain and training for RDB. When the
number of users is less than the square root of the number
of transmit antennas, training should be used to enhance the
RDB performance. Furthermore, we have shown that as the
product of the number of users and the number of equi-spaced
training beams increases linearly with respect to the number
of transmit antennas, the performance of perfect beamforming
with perfect CSI can be achieved by RDB. The results here
provide insights into system design in mm-wave MU-MIMO.
The multi-beam multi-user selection case was studied in [1].
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