
1086 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 2, FEBRUARY 2016

Randomly-Directional Beamforming in
Millimeter-Wave Multiuser MISO Downlink

Gilwon Lee, Student Member, IEEE, Youngchul Sung, Senior Member, IEEE,
and Junyeong Seo, Student Member, IEEE

Abstract—In this paper, the performance of opportunistic
random beamforming (RBF) and the multiuser (MU) gain
in millimeter-wave (mm-wave) MU multiple-input single-output
(MISO) downlink systems are analyzed based on the uniform
random single-path (UR-SP) channel model suitable for highly
directional mm-wave radio propagation channels. It is shown that
under the UR-SP channel model, RBF achieves linear sum rate
scaling with respect to (w.r.t.) the number of transmit antennas
and, furthermore, yields optimal sum rate performance when the
number of transmit antennas is large, if the number of users
increases linearly w.r.t. the number of transmit antennas. Several
beam training and user selection methods are investigated to
yield insights into the most effective beamforming and scheduling
choice for mm-wave MU-MISO in various operating conditions.
Simulation results validate our analysis based on asymptotic tech-
niques for finite cases.

Index Terms—Millimeter-Wave, Multi-User MIMO, Massive
MIMO, Opportunistic Random Beamforming, Randomly-
Directional Beamforming.

I. INTRODUCTION

Motivation: Recently, mm-wave multiple-input multiple-
output (MIMO) operating in the band of 30-300 GHz is con-
sidered as a promising technology to attain high data rates for
5G wireless communications. Radio propagation in the mm-
wave band has several intrinsic properties; the propagation in
the mm-wave band is highly directional with large path loss and
very few multi-paths. To compensate for the large path loss in
the mm-wave band, highly directional beamforming is required
based on large antenna arrays which can easily be implemented
in the mm-wave band due to small wavelength. To perform
highly directional downlink beamforming to a user in the cell,
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accurate channel state information (CSI) is required at the base
station (BS). However, the channel is sparse in the arrival angle
domain and downlink channel estimation is difficult [4]–[6].
That is, it is difficult to identify the sparse propagation angle
and gain between the BS and an arbitrary receiver in the cell,
and identifying the sparse channel in the angle domain requires
sophisticated algorithms and heavy training overhead [4]–[7].
However, the focus of the existing channel estimation meth-
ods is single-user mm-wave MIMO systems which do not have
MU diversity. Suppose directional downlink beamforming with
a large uniform linear array (ULA) of transmit antennas at the
BS. Although the downlink beam is highly directional, it still
has some beam width because the number of transmit antennas
is finite in practice. Thus, one might ask what happens if there
are many users in the cell and the BS just selects the transmis-
sion beam direction randomly in the angle domain and looks for
a receiver that happens to be in the beam width of the selected
beam of the BS. Of course, if there exists only a single receiver
in the cell, such randomly-directional beamforming (RDB) with
a narrow beam width will not perform well because it will miss
the receiver in most cases. However, if there exist more than one
receivers randomly located in the cell, the RDB scheme may
perform reasonably well with a sufficient number of users in the
cell. Then, a natural question is “how many users in the cell are
enough for reasonable performance of such simple RDB and
RDB with multiple beams, so-called RBF [8], in the mm-wave
band?” In this paper, we investigate the performance of RDB
and the associated MU gain in the mm-wave band to answer
the above question.

Channel model for mm-wave MIMO systems : Since the per-
formance of RDB (or RBF) depends on the channel model,
answering the above question should be based on a meaningful
channel model. In conventional lower band MIMO commu-
nication, many MU gain analyses were performed with the
assumption of rich scattering, i.e., mostly under the indepen-
dent and identically distributed (i.i.d.) Rayleigh fading channel
model or its variants such as correlated fading or one-ring chan-
nel model [8]–[17]. However, the propagation in the mm-wave
band is quite different from that in the lower band; propaga-
tion in the mm-wave band is highly directional and there are
very few multi-paths in propagation channels [4], [6], [7], [18].
To model wireless channels in the mm-wave band, the UR-SP
channel model was proposed in [19], [20]. The UR-SP chan-
nel model well captures the highly directional propagation in
the mm-wave band and is still analytically tractable [19], [20].
Such single-path channel models were widely-used for per-
formance analysis of mm-wave systems [19]–[25]. Under the
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UR-SP channel model, the channel vector of each user in the
cell has a single path component with a random direction (or
angle) and a random path gain. Since there is only one path in
each user’s channel under the UR-SP channel model, the UR-
SP channel model is a simplified channel model capturing the
dominant path in directional propagation environments. To gain
insights into random beamforming in the highly-directional
mm-wave band and make performance analysis tractable, we
adopt the UR-SP channel model in this paper even though the
actual channel may lie somewhere between the UR-SP channel
model and the i.i.d. Rayleigh fading channel model.

Summary of Results: The MU gain under rich scattering
environments has been investigated extensively during the last
decade [8]–[17]. However, not much work has been done yet
regarding the MU gain in mm-wave MU-MISO/MIMO sys-
tems. Recently, in [20], Ngo et al. simplified the UR-SP channel
model as an urns-and-balls model and numerically showed that
user scheduling can improve the worst-user performance. This
work provides an intuitive and insightful observation regarding
the MU gain in mm-wave MU-MISO, but the urns-and-balls
channel model seems a bit oversimplified compared to the UR-
SP channel model since the urns-and-balls model does not
consider non-orthogonal regions of UR-SP and ignores inter-
beam interference. In this paper, we rigorously analyze the
RDB scheme, the associated MU gain, and user scheduling
in mm-wave MU-MISO in an asymptotic regime in which the
number of transmit antennas tends to infinity, under the UR-
SP channel model capturing inter-beam interference and the
assumption of an ULA at the BS, and provide guidelines for
optimal operation in highly directional mm-wave MU-MISO
systems. The main result of this paper is that under the UR-SP
channel model, RBF achieves linear sum rate scaling w.r.t. the
number of transmit antennas as the number of users increases
linearly w.r.t. the number of transmit antennas, and furthermore
it yields optimal sum rate performance for MU-MISO downlink
with a large number of transmit antennas only with a number of
users in the cell that is in the same order of the number of trans-
mit antennas. This result is contrary to the existing result in
rich scattering environments that opportunistic random beam-
forming does not provide a gain for MU-MISO in the regime
of a large number of transmit antennas under rich scattering
environments [8], [10], [12]. The fundamental reason for the
performance difference of RBF is that the degree-of-freedom
in the UR-SP channel model is one regardless of the number of
transmit antennas. Thus, in this model, the orthogonality of the
multiple transmit beams can be attained by simply dividing the
1-dimensional line of the normalized angle by line segments.
Hence, the dimension of the search space for orthogonality is
reduced from the number of transmit antennas to one when
considering the UR-SP channel model instead of the Rayleigh
fading channel model.

Notations and Organization: Vectors and matrices are writ-
ten in boldface with matrices in capitals. For a matrix A, AT ,
AH , and tr(A) indicate the transpose, conjugate transpose, and
trace of A, respectively. In stands for the identity matrix of
size n. (The subscript will be omitted if unnecessary.) The
notation x ∼ CN(μ,�) means that x is complex Gaussian dis-
tributed with mean vector μ and covariance matrix �, and

θ ∼ Unif[a, b] means that θ is uniformly distributed over the
range [a, b]. E[·] denotes the expectation. ι := √−1 and Z is
the set of integers. a ↑ b indicates that a converges to b from
the below.

The remainder of this paper is organized as follows. In
Section II, the system model and preliminaries are described.
In Section III, the considered RDB scheme is explained. The
asymptotic performance is analyzed for the single beam case
in Section IV and for the multiple beam case with single user
selection or multiple user selection in Section V. Numerical
results are provided in Section VI, followed by conclusions in
Section VII.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a single-cell mm-wave MU-MISO downlink
system in which a BS equipped with an ULA of M trans-
mit antennas communicates with K single-antenna users. The
received signal at user k is then given by

yk = hH
k x + nk, k = 1, 2, · · · , K , (1)

where hk = [hk,1, hk,2, · · · , hk,M ]T is the channel vector of
user k, x is the transmitted signal vector subject to a power
constraint tr(E{xxH }) ≤ Pt , and nk ∼ CN(0, 1) is the additive
noise at user k.

A. Channel Model

For a typical mm-wave channel, there exist very few mul-
tipaths due to the highly directional and quasi-optical nature
of electromagnetic wave propagation in the mm-wave band. A
general mm-wave channel is composed of a line-of-sight (LoS)
propagation component and a set of few single-bounce non-LoS
(NLoS) components, and hence the mm-wave channel for ULA
systems can be modeled as

hk = αk,L O S
√

Ma
(
θk,L O S

)+
∑

i

α
(i)
k,N L O S

√
Ma

(
θ

(i)
k,N L O S

)
,

(2)

for k = 1, · · · , K , where αk,L O S and θk,L O S are the complex
gain and normalized direction of the LoS path for user k,
{α(i)

k,N L O S} and {θ(i)
k,N L O S} represent the complex gains and nor-

malized directions of NLoS paths for user k, and a(θ) is the
array steering vector given by

a(θ) = 1√
M

[
1, e−ιπθ , · · · , e−ιπ(M−1)θ

]T
. (3)

Here, the normalized direction θ is connected with the physi-
cal angle of departure φ ∈ [−π/2, π/2] as θ = 2d sin(φ)

λ
, where

d and λ are the distance between two adjacent antennas and
the carrier wavelength, respectively. We assume the critically-
sampled environment, i.e., d

λ
= 1

2 in this paper. Note that
the array steering vector in (3) has unit norm and thus the
normalization factor

√
M is included in (2).

For mm-wave channels with LoS links, the effect of NLoS
links is marginal since the path loss of NLoS components is
much larger than that of the LoS component; the power |αk,i |2
associated with NLoS paths is typically 20 dB weaker than
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the LoS component |αk |2 [18]. However, even when there is
no LoS path, it is suggested that communication is feasible
through a NLoS path with highly directional beamforming [18].
In both cases, there exist very few paths and hence, in many
works for mm-wave MIMO [19]–[26] researchers adopted the
single-path (SP) model considering one dominant path which
is the LoS path if a LoS path exists or the dominant NLoS
path if a LoS does not exist. Here, to make analysis tractable
and gain insights into the MU gain in highly-directional mm-
wave MIMO, we also adopt the SP model considering the
dominant path. We assume that the dominant path gain is

Gaussian-distributed, i.e., αk
i.i.d.∼ CN(0, 1) (this captures that

the dominant path can be a LoS path or a NLoS path) and
that the normalized direction θk for each user k is indepen-

dent and identically distributed (i.i.d.) with θk
i.i.d.∼ Unif[−1, 1].

From the above assumptions, the considered mm-wave channel
model is expressed as

hk = αk
√

Ma(θk), for k = 1, · · · , K , (4)

where αk and θk are the path gain and angle of the dominant
path for user k. This channel model is the UR-SP model con-
sidered in [19], [20]. In this paper, we adopt this channel model.
Note that the power of the UR-SP channel model (4) is given
by E{‖hk‖2} = M . Thus, the channel power linearly increases
w.r.t. M as in the i.i.d. Rayleigh channel model hk ∼ CN(0, I).
This means that the power radiated in the space is collected by
the receiver antenna.

B. Review of Opportunistic Random Beamforming in Rich
Scattering Environments

Before introducing the considered RDB for large mm-wave
MIMO systems with the UR-SP channel model, we briefly
review the RBF scheme in [8] and its performance in rich
scattering environments under which each element hk, j in the
channel vector hk has an i.i.d. Rayleigh fading:

hk, j
i.i.d.∼ CN

(
0, σ 2

h

)
for j = 1, · · · , M. (5)

In the RBF scheme, the BS constructs a set of S random
orthonormal beam vectors {u1, · · · , uS} and transmits each
beam sequentially to the K users in the cell during the training
period. Then, each user k computes the signal-to-interference-
plus-noise ratio (SINR) for each beam direction at the end of

the training period, given by SINRk,i =
Pt
S |hH

k ui |2
1+ Pt

S

∑
j �=i |hH

k u j |2
for

i = 1, · · · , S. After the training period, each user k feeds back
its maximum SINR value, i.e., max1≤i≤S SINRk,i , and the beam
index i at which the SINR is maximum. Then, after the feed-
back the BS assigns each beam i to the user k′(i) with the
highest SINR for beam i , i.e., k′(i) = arg max1≤k≤K SINRk,i ,
and transmits S data streams to the selected S users. In [8],
Sharif and Hassibi derived several scaling laws of this RBF
scheme in the case of S = M with the small-scale1 MIMO in

1In small-scale MIMO systems, M is small and K is relatively large. Hence,
the authors of [8] focused on the asymptotic scenario in which K grows to infin-
ity with fixed M or M growing much slower than K . Note that K = 	(eM ) for
K as a function of M for the scaling of M = 	(log K ) considered in [8].

mind, i.e., M 
 K , as K → ∞. Specifically, they showed

RR B F ∼K

{
M log log K , for fixed M,

cM, for M = O(log K ),
(6)

where RR B F = E[
∑M

i=1 log(1 + max1≤k≤K SINRk,i )] and
c is a positive constant. (Here, x ∼K y indicates that
limK→∞ x/y = 1.) Furthermore, they showed that [8]

lim
K→∞

RR B F

M
= 0, (7)

if limK→∞ M
log K = ∞ (limK→∞ M

log K = ∞ is equivalent to

limK→∞ log K
M = 0). The above scaling laws state that the sum

rate of the RBF scheme maintains linear scaling w.r.t. the num-
ber M of transmit antennas when M grows no faster than log K
as K → ∞, but this linear scaling w.r.t. M is not achieved
when M grows faster than log K as K → ∞. That is, the RBF
scheme performs well, i.e., the RBF data rate grows linearly
w.r.t. the number M of antennas in small-scale MIMO systems
with a large number of users in the cell, but does not show lin-
ear scaling rate w.r.t. M in massive MIMO situations under rich
scattering environments.

Now consider the case of mm-wave MIMO. Due to large path
loss in the mm-wave band, highly directional beamforming is
required to compensate for the large path loss. This means a
large antenna array at the BS, i.e., M is very large. In the follow-
ing sections, we investigate the performance of RBF under the
UR-SP channel model in a progressive manner from one sin-
gle random beam and single user selection to multiple random
(asymptotically-orthogonal) beams and multiple user selection
under a massive MIMO asymptote in which M tends to infinity.

III. RANDOMLY-DIRECTIONAL BEAMFORMING IN

MASSIVE mm-WAVE MISO

First, we consider the RDB strategy in the single beam
downlink transmission case. In this case, during the training
period, the BS chooses a normalized direction ϑ randomly and
transmits the beam x in (1) given by

x = a(ϑ) (8)

where ϑ ∼ Unif[−1, 1] and a(θ) is given by (3). (We set
Pt = 1 for simplicity here.) Then, each user k in the cell
composed of K users feeds back the average received
power2 |ȳk |2 (≈ |hkx|2 + 1

Ns
) to the BS, where |hH

k x|2 =
|αk |2 · M |a(θk)

H a(ϑ)|2. After the feedback period is over, the
BS selects the user that has maximum signal power and trans-
mits a data stream with the beamforming vector x in (8) to the
user. Then, the expected rate R1 of the RDB scheme is given by

R1 = E

[
log

(
1 + max

1≤k≤K
|αk |2 M |a(θk)

H a(ϑ)|2
)]

, (9)

2To average out the noise effect, each user can have multiple time sam-
ples yk (i) during the training period and average the multiple samples for the

feedback value |ȳk |2 = | 1
Ns

∑Ns
i=1 yk (i)|2 (a)= |hH

k x|2 + 1
Ns

. We assume that
sufficient sample average is done and will ignore possible error in step (a) in
this paper.
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where the expectation is over hk and x.
Consider the case of K = 1, i.e., only one user in the cell.

In this case, we have an upper bound on R1 from Jensen’s
inequality as

R1 = E

[
log

(
1 + |α1|2 M |a(θ1)

H a(ϑ)|2
)]

≤ log
(

1 + E

[
|α1|2 M |a(θ1)

H a(ϑ)|2
])

= log
(

1 + E

[
|α1|2

]
E

[
M |a(θ1)

H a(ϑ)|2
])

= log 2.

The last equality holds from E[|α1|2] = 1 because |α1|2 has
a chi-square distribution with degree-of-freedom two, i.e.,
|α1|2 ∼ χ2(2) and from

E[M |a(θ1)
H a(ϑ)|2] = 1

M
E

⎡
⎣
∣∣∣∣∣
M−1∑
n=0

e−ιπn(ϑ−θ1)

∣∣∣∣∣
2⎤⎦

= 1

M
E

⎡
⎢⎣M +

∑
n,m
n �=m

e−ιπ(m−n)(ϑ−θ1)

⎤
⎥⎦

(a)= 1,

where step (a) holds because E[e− jπ(m−n)(ϑ−θ1)] =
1
2

∫ 1
−1 e− jπ(m−n)θ̃k d θ̃k = sin π(m−n)

π(m−n)
= 0 for any (m − n) ∈

Z\{0} [20].3 Furthermore, it will be shown in the next section
that R1 actually goes to zero as M → ∞. Thus, the rate of
the RDB scheme for K = 1 is insignificant. In this case, it is
imperative to obtain the CSI of the single user to achieve the
attainable rate of log(1 + |α1|2 M) ∼M log M [4]–[6].

However, the situation becomes different as K becomes
large. To see this, we need to represent the key term
|a(θk)

H a(ϑ)| in this paper in an explicit form. Under the UR-
SP channel model, this inner product |a(θk)

H a(ϑ)| between
the transmission beam a(ϑ) with the direction angle ϑ and the
channel of user k located at angle θk plays a key role and defines
the beam pattern associated with transmission beam a(ϑ). The
inner product |a(θk)

H a(ϑ)| is explicitly given by

|a(θk)
H a(ϑ)| = 1

M

∣∣∣∣∣
M−1∑
n=0

e−ιπn(ϑ−θk )

∣∣∣∣∣ = 1

M

∣∣∣∣∣1 − e−ιπ(ϑ−θk )M

1 − e−ιπ(ϑ−θk )

∣∣∣∣∣
= 1

M

∣∣∣∣∣ sin π(ϑ−θk )M
2

sin π(ϑ−θk)
2

∣∣∣∣∣ =: FM (ϑ − θk), (10)

which is called the Fejér kernel FM (·) of order M [27]. Fig. 1
shows the value of (10) versus ϑ − θk . Note that the beam pat-
tern ripples in a roughly diminishing manner as θk goes away
from the beam center angle ϑ , and the pattern has nulls at the
angles that are multiples of 2/M . The Fejér kernel beam pat-
tern is the standard beam pattern of ULAs [28, Chs. 2 and 3].
Typically, the non-zero region around the beam center angle ϑ

is called the main lobe and the non-zero regions between nulls
are called side-lobes. From (10), we have |a(θk)

H a(ϑ)| →
3We can regard θ̃k := ϑ − θk ∼ Unif[−1, 1] in case that ϑ − θk appears

as eιπl(ϑ−θk ) for any integer l due to the periodicity of period two. See
Appendix A.

Fig. 1. FM (ϑ − θk ) in (10) when M = 100.

0 as M → ∞ for fixed ϑ and θk . On the other hand, we

have |a(θk)
H a(ϑ)| →

∣∣∣∣ 2 sin π�
2

π�

∣∣∣∣ as M → ∞, if ϑ − θk = �
M for

some � > 0 [20]. This is because

1

M

∣∣∣∣∣ sin π(ϑ−θk )M
2

sin π(ϑ−θk)
2

∣∣∣∣∣ (a)≈ 1

M

∣∣∣∣∣ sin π�
2

π�
2M

∣∣∣∣∣ →
∣∣∣∣∣2 sin π�

2

π�

∣∣∣∣∣ (11)

where (a) holds from sin ε ≈ ε for small ε > 0. That is, the
asymptotic value of |a(θk)

H a(ϑ)| may not be zero if (ϑ − θk)

becomes sufficiently small in the order of O
(

1
M

)
(i.e., within

the half of the main lobe width) as M → ∞. Suppose that we
can find a user k such that |ϑ − θk | < 1

M almost surely due to
MU diversity. Then, the rate R1 of the RDB scheme is lower
bounded by

R1 ≥ E

[
log

(
1 + |αk |2 M

4

π2

)]
∼M log M, (12)

as M → ∞. In other words, if the number K of users as a func-
tion of M is sufficiently large such that there exists a user k

for whom |ϑ − θk | is sufficiently small in the order of O
(

1
M

)
with high probability, the RDB scheme has asymptotically good
performance.

IV. ASYMPTOTIC ANALYSIS OF THE RDB RATE: THE

SINGLE BEAM CASE

With the intuition gained in the previous section, we first
rigorously analyze the asymptotic performance of the RDB
scheme in the single downlink beam case in this section.
Direct computation of R1 in (9) is difficult since the integral
in (9) does not have a closed-form expression. To circum-
vent this difficulty, we use several techniques to bound R1 by
first assuming that αk = 1 for all k and focusing on the term
Zk := M |a(θk)

H a(ϑ)|2 in (9). Then, we will include the term
αk ∼ CN(0, 1) in the performance analysis later.

Lemma 1: For any constant p ∈ (−1, 1) and sufficiently
large M , we have

|θ̃k | <
1

π
4 M (1+p)/2

(13)

under the event {Zk > M p}, and furthermore

1

2π M (1+p)/2
< Pr{Zk > M p} <

1
π
4 M (1+p)/2

, (14)
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where θ̃k = ϑ − θk and Zk = M |a(θk)
H a(ϑ)|2.

Proof: From (10), the event {Zk = M |a(θk)
H a(ϑ)|2 >

M p} is equivalent to∣∣∣∣∣ sin πθ̃k M
2

sin πθ̃k
2

∣∣∣∣∣ > M (1+p)/2, (15)

where θ̃k ∼ Unif[−1, 1] as shown in Appendix A. A necessary
condition to satisfy (15) is that the denominator in the left-hand
side (LHS) of (15) should be upper bounded as∣∣∣∣sin

πθ̃k

2

∣∣∣∣ <
1

M (1+p)/2
(16)

since the numerator
∣∣∣sin πθ̃k M

2

∣∣∣ ≤ 1 and M (1+p)/2 > 1 for

p ∈ (−1, 1) and M > 1. For given p ∈ (−1, 1), the value
1/M (1+p)/2 in the right-hand side (RHS) of (16) goes to zero
as M → ∞. Hence, by the fact that ε

2 < sin ε for small ε > 0,
(16) implies that for sufficiently large M ,

1

2
· π

2
|θ̃k | <

1

M (1+p)/2
. (17)

Therefore, (13) holds under the event {Zk > M p}, and we have
the upper bound part Pr{Zk > M p} < 1

π
4 M(1+p)/2 in (14), since

(17) is a necessary condition for {Zk > M p}:

Pr{Zk > M p} < Pr

{
|θ̃k | <

1
π
4 M (1+p)/2

}

= 1
π
4 M (1+p)/2

for sufficiently large M , since θ̃k ∼ Unif[−1, 1].
Now consider the lower bound part in (14). From the fact that

sin ε < ε for ε > 0, we have∣∣∣∣sin
πθ̃k

2

∣∣∣∣ <
1

2M (1+p)/2
(18)

if

π

2
|θ̃k | <

1

2M (1+p)/2
. (19)

If the following equation∣∣∣∣sin
πθ̃k M

2

∣∣∣∣ ≥ 1

2
(20)

is satisfied in addition to (19) implying (18), then (15) is satis-
fied (i.e., the joint event of (19) and (20) is a sufficient condition
for (15)). It is easy to see that the solution to (20) is

|θ̃k | ∈
{[

2k

M
+ 1

3M
,

2k

M
+ 5

3M

]
, k = 0, 1, 2, · · · ,

}
. (21)

Note that
∣∣∣sin πθ̃k M

2

∣∣∣ in (20) has period 2
M and the length of

one interval per period contained in the set (21) is 4
3M . Hence,

the set (21) occupies 2
3 length of each period of 2

M . Since the

term 1
M(p+1)/2 for given p ∈ (−1, 1) converges to zero slower

than 1
M as M → ∞, multiple discontinuous intervals in the set

(21) are contained in the set defined by (19), and the length
of the intersection of the sets (19) and (21) is lower bounded

by 2
3

(
1

π M(1+p)/2 − 2
M

)
, where minus 2

M takes into account the

impact of the last possibly partially overlapping interval. Hence,
we have the lower bound part of (14):

Pr{Zk > M p} ≥ 2

3

(
1

π M (1+p)/2
− 2

M

)

>
1

2
· 1

π M (1+p)/2
.

for sufficiently large M . �
Using Lemma 1 we have the following theorem.
Theorem 1: For K = Mq and any given q ∈ (0, 1),4 we have

asymptotic upper and lower bounds for R1 in (9) when αk = 1
for all k, given by

log
(
1 + M2q−1−ε

)
�M E

[
log(1 + Z)

]
�M log

(
1 + M2q−1+ε

)
(22)

for any sufficiently small ε > 0, where Z = max
1≤k≤K

Zk and

x �M y means limM→∞ x/y ≤ 1.

Proof: Define cM as

cM
�= 1

Pr{Zk > M p} · M (1+p)/2
for each M

for p ∈ (−1, 1). Then, we have

Pr{Zk > M p} = 1

cM M (1+p)/2
for each M, (23)

and cM is bounded between π
4 and 2π for sufficiently large

M by Lemma 1.5 (cM is a bounded sequence with index M .)
By (23), the probability of the event {Z > M p} for any p ∈
(−1, 1) can be expressed as

Pr

{
max

k
Zk > M p

}
= 1 − Pr{Zk ≤ M p}K (24)

= 1 −
(

1 − 1

cM M (1+p)/2

)K

. (25)

Now consider an arbitrarily small given ε such that 0 < ε <

min(2q, 2 − 2q) (say, if the given q = 0.9, then 0 < ε < 0.2).

4The ultimate goal of this paper is to show the sum rate optimality of RBF for
large M under the UR-SP channel model as K ↑ M , as shown in Corollary 2.
Among several parameterizations for K ↑ M with K as a function of M , we
chose the fractional power function K = Mq with 0 ≤ q ≤ 1 in this paper. This
parameterization easily expresses K ↑ M by letting q ↑ 1. Furthermore, when
M is large as in massive MIMO, e.g. in order of hundred, the number K of
active users in the cell may not be as large as M . Such an operating regime
is called the sparse user regime[29], [30]. The parameterization K = Mq with
0 ≤ q ≤ 1 is effective to represent the number of users in the sparse user regime
with a single parameter q and to analyze the performance of a scheduling
algorithm depending on q, as seen in Section V-C.

5Since Lemma 1 states 1
2π M(1+p)/2 < Pr{Zk > M p} < 1

π
4 M(1+p)/2 for any

constant p ∈ (−1, 1) and sufficiently large M , such constant cM exists for each
M when M is sufficiently large.
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Set p = 2q − 1 − ε. Then, p ∈ (−1, 1) and (25) is applica-
ble. Compute the second term in (25) with p = 2q − 1 − ε,
given by

(
1 − 1

cM M (1+p)/2

)K

=
(

1 − 1

cM Mq− ε
2

)Mq

(26)

= e
Mq log

(
1− 1

cM M
q− ε

2

)
(27)

= e
− 1

cM
Mε/2+O

(
1

M2q−ε

)
(28)

→ 0 as M → ∞, (29)

where we used the fact that log(1 − x) = −x + O(x2) for
small x in the third step. Therefore, in this case, we have

Pr{Z > M2q−1−ε} → 1, as M → ∞ (30)

and thus E[log(1 + Z)] can be bounded as

E[log(1 + Z)] ≥
∫ M

M2q−1−ε

log(1 + z)p(z)dz (31)

≥ log
(

1 + M2q−1−ε
) ∫ M

M2q−1−ε

p(z)dz (32)

∼M log
(

1 + M2q−1−ε
)

, (33)

since
∫ M

M2q−1−ε p(z)dz = Pr{Z > M2q−1−ε} → 1 by (30) in
this case. Hence, the claim on the lower bound follows.

Now set p = 2q − 1 + ε. Then, p ∈ (−1, 1) and (25) is
applicable. Again by using the techniques used in (26)–(29),
compute the second term in (25) with p = 2q − 1 + ε, given by(

1 − 1

cM M (1+p)/2

)K

= e
− 1

cM
M−ε/2+O

(
1

M2q+ε

)
(34)

(a)= 1 + O

(
− 1

M
ε
2

+ 1

M2q+ε

)
(35)

= 1 − O

(
1

M
ε
2

)
, (36)

where the step (a) holds by the identity ex = 1 + O(x) for
small x . Therefore, in this case, the probability of the event

{Z > M2q−1+ε} is given by O
(

1
Mε/2

)
. Using this, we have

E[log(1 + Z)]

=
∫ M

M2q−1+ε

log(1 + z)p(z)dz +
∫ M2q−1+ε

0
log(1 + z)p(z)dz

(37)

≤ log(1 + M)O

(
1

Mε/2

)
+ log

(
1 + M2q−1+ε

)
(38)

∼M log
(

1 + M2q−1+ε
)

. (39)

In the second step, we used
∫ M

M2q−1+ε p(z)dz = Pr{Z >

M2q−1+ε} = O
(

1
Mε/2

)
. Hence, the claim on the upper bound

follows. �

Theorem 1 states that the single-beam RDB scheme under
the assumption αk = 1, ∀ k has asymptotically nontrivial per-
formance, i.e., R1 → ∞, as M → ∞, when K = Mq with
q ∈ ( 1

2 , 1). On the other hand, when K = Mq with q ∈ (0, 1
2 ),

the RDB scheme has trivial performance, i.e., R1 → 0, as
M → ∞. Thus, q = 1

2 is the performance transition point for
the single-beam RDB scheme under the UR-SP channel model.

Now consider the impact of the path gain term αk
i.i.d.∼

CN(0, 1) on the single-beam RDB rate R1. In fact, the same

is true under the assumption of αk
i.i.d.∼ CN(0, 1).

Theorem 2: For K = Mq with q ∈ ( 1
2 , 1) and αk

i.i.d.∼
CN(0, 1), we have

lim
M→∞

R1

E
[
log

(
1 + M maxk |αk |2

)] = 2q − 1, (40)

where R1 is the optimal single-beam RDB rate
defined in (9) considering the random path gain, and
E
[
log(1 + M maxk |αk |2)

]
is the optimal rate of exact

beamforming based on perfect CSI at the BS. On the other
hand, when q ∈ (0, 1

2 ), R1 → 0 as M → ∞.

Proof: See Appendix B. �
Note that the ratio 2q − 1 of the RDB rate R1 to the exact

beamforming rate is the same for both assumptions αk = 1
and αk ∼ CN(0, 1). As seen, the single-beam RDB strategy
achieves 2q − 1 fraction of the exact beamforming rate based
on perfect CSI at the BS. The supremum fraction of one can
be achieved arbitrarily closely when the number K of users
grows almost linearly w.r.t. M , i.e., q is arbitrarily close to
one. Note that in the single beam case we only have the power
gain by the antenna array, as shown in the maximum rate of
E
[
log(1 + M maxk |αk |2)

]
even by perfect beamforming.

V. ASYMPTOTIC ANALYSIS OF THE RDB RATE: THE

MULTIPLE BEAM CASE

In this section, we consider the case in which the number S
of randomly-directional beams is more than one and allowed to
grow to infinity as a function of M , and analyze the correspond-
ing asymptotic performance. In the multiple beam case, the BS
transmits S random beams equi-spaced in the normalized angle
domain, defined as

ub = a(ϑb) = a
(

ϑ + 2(b − 1)

S

)
, for b = 1, · · · , S, (41)

where ϑ ∼ Unif[−1, 1], to the downlink sequentially during
the training period. We assume that the network is synchronized
and thus each user knows the training beam index b by the cor-
responding training interval. Here, the difference between the
normalized directions of two adjacent beams is 2

S and the offset
ϑ is randomly generated on [−1, 1]. (Recall from (3) that a(θ)

is periodic in θ with period 2.) Note that the equi-spaced beams
are asymptotically orthogonal to one another, i.e.,

lim
M→∞ |a(ϑb1)

H a(ϑb2)| = 0 for b1 �= b2, (42)

when S = o(M).
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In the next subsections, we analyze the asymptotic perfor-
mance of single user selection based on multiple training beams
first and multiple user selection based on multiple beams later.

A. The Single User Selection Case

In the single user selection case, after the training period is
over, each user reports the maximum of its received power val-
ues for the S training beams and the corresponding beam index.
Then, the BS transmits a data stream to the user that has max-
imum received power with the corresponding beam wb. In this
case, the rate RS is given by

RS = E

[
log

(
1 + max

1≤k≤K
max

1≤b≤S
|αk |2 M |a(θk)

H a(ϑb)|2
)]

.

(43)

First, consider the case of |αk | = 1 for all k = 1, · · · , K as
before. In this case, we have the following theorem:

Theorem 3: For K = Mq , S = M� and any �, q ∈ (0, 1)

such that � + q < 1, we have asymptotic lower and upper
bounds on RS in the case of |αk | = 1, ∀ k, given by

log
(

1 + M2q+2�−1−ε
)
�M E

[
log

(
1 + Z ′)]

�M log
(

1 + M2q+2�−1+ε
)

(44)

for any sufficiently small ε > 0, where Z ′ = maxk Z ′
k and Z ′

k =
maxb M |a(θk)

H a(ϑb)|2.

Proof: Proof consists of two steps as in the proofs of
Lemma 1 and Theorem 1: (i) first, we bound Pr{Z ′

k ≤ M p} and
(ii) then bound E

[
log(1 + Z ′)

]
using the bounds on Pr{Z ′

k ≤
M p}.

(i) First, consider

Pr{A} := Pr{Z ′
k = max

b
M |a(θk)

H a(ϑb)|2 > M p}

for p ∈ (−1, 1). Let Ci be the event that i =
arg maxb M |a(θk)

H a(ϑb)|2, i.e., Ci is the event that the
i-th beam is the optimal beam for user k. Note that the
distribution of M |a(θk)

H a(ϑb)|2 = M · F2
M (ϑb − θk) =

M · F2
M

(
ϑ + 2(b−1)

S − θk

)
= M · F2

M

(
θ̃k + 2(b−1)

S

)
is inde-

pendent of b since θ̃k = ϑ − θk ∼ Unif[−1, 1] and the
Fejér kernel FM (θ̃) is a periodic function with period 2.
Hence, the events C1, C2, · · · , CM� are equally probable as
Pr{Ci } = 1

S = 1
M� for every i = 1, · · · , M�. Furthermore, the

conditional events A|C1, A|C2, · · · , A|CM� are also equally
probable, i.e., Pr{A|C1} = · · · = Pr{A|CM�} since the situation
is the same for each ϑb due to the periodicity of FM (·) of
period two and θ̃k ∼ Unif[−1, 1]. Hence, by the law of total
probability and Bayes’ rule, we have

Pr{A} =
M�∑
i=1

Pr{A|Ci } Pr{Ci } = Pr{A|C1}

= M� · Pr{A, C1}.
Thus, to bound Pr{A}, we need to bound Pr{A, C1}. In order
to bound Pr{A, C1}, we find a sufficient condition for the event

C1. Let C̃1(p) be the event M |a(θk)
H a(ϑ1)|2 > M p. Then, the

event C̃1(p) with p > 2� − 1 implies

|θk − ϑ1| (a)
<

1
π
4 M (p+1)/2

(b)= 1
π
4 M�+δ/2

(45)

for sufficiently large M , where δ = p − (2� − 1) > 0. (Here,
step (a) is by (13) of Lemma 1 with p ∈ (−1, 1), and step (b)
is by the new additional condition p > 2� − 1.) Therefore,
in this case, |θk − ϑb| > | 2

M� − 1
π
4 M�+δ/2 | > 1

M� = 1
2

2
S for any

b �= 1 and sufficiently large M , and this implies for sufficiently
large M

C̃1(p) ⊂ C1 for p ∈ (−1, 1) and p > 2� − 1. (46)

Now consider Pr{A, C1}

Pr{A, C1} = Pr

{
max

b
M |a(θk)

H a(ϑb)|2 > M p,

1 = arg max
b

M |a(θk)
H a(ϑb)|2

}
= Pr{C̃1(p), C1}. (47)

By using (46) and (47), we have

Pr{A, C1} (c)= Pr{C̃1(p), C1} (d)= Pr{C̃1(p)}
= Pr{M |a(θk)

H a(ϑ1)|2 > M p} (48)

when p ∈ (−1, 1) and p > 2� − 1 (these two conditions are
required to apply (46) for step (d), and step (c) is valid by (47)).
Now by applying (14) of Lemma 1 to the last term in (48) and
using Pr{A} = M� · Pr{A, C1}, we have for p ∈ (−1, 1) and
p > 2� − 1,

1

2π M (1+p−2�)/2
< Pr{A} <

1
π
4 M (1+p−2�)/2

. (49)

(ii) Substituting Pr{Z ′
k ≤ M p} = 1 − Pr{A} into Pr{Zk ≤

M p} in (24) of the proof in Theorem 1 and following the
proof of Theorem 1, we have for p = 2q + 2� − 1 − ε with
arbitrarily small ε > 0,

E[log
(
1 + Z ′)] �M log

(
1 + M p) , (50)

and for p = 2q + 2� − 1 + ε with arbitrarily small ε > 0,

E
[
log

(
1 + Z ′)] �M log

(
1 + M p) (51)

provided that � + q < 1 (this is required for the condi-
tion p ∈ (−1, 1)), where x �M y indicates limM→∞ x/y ≥ 1.
Therefore, we have (44). �

Corollary 1: For K = Mq , S = M� and any �, q ∈ (0, 1)

such that 1
2 < � + q < 1, we have

lim
M→∞

E
[
log

(
1 + Z ′)]

log(1 + M)
= 2(q + �) − 1. (52)

When the number S of training beams is fixed, i.e., � = 0,
Corollary 1 reduces to the single beam result in (40). In the
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single user selection with multiple training beams, as seen
in (52), the supremum of one for the achievable fraction can
be achieved arbitrarily closely by the combination of multi-
ple users q and multiple training beams �. Thus, when there
exist not sufficiently many users in the cell, multiple training
beams can be used to enhance the RDB performance. Note that
even for q = 0, the optimal rate can be achieved with RS by
making � ↑ 1, as expected. (In fact, this case corresponds to
the case considered in the previous works on channel estima-
tion for sparse mm-wave MIMO channels, e.g. [6].) Note also
that the effect of two terms is not distinguishable at least in
terms of the rate during the data transmission period, although
multiple training beams require more training time. It can be
shown that even with consideration of the random channel gain

αk
i.i.d.∼ CN(0, 1), the same result as (52) is valid.

B. The Multiple User Selection Case: Multiplexing Gain

Finally, aiming at multiplexing gain, we consider multiple
user selection with RDB with multiple beams, where inter-
beam interference should be considered, and investigate what
can be achieved under the assumption of |αk | = 1, ∀ k for
simplicity. The considered multi-user multi-beam scheme here
is basically the conventional RBF scheme in [8] with the S
random (asymptotically) orthogonal beams given by ub, b =
1, · · · , S, defined in (41). In this scheme, we choose a user
that has maximum SINR for each beam ub, b = 1, · · · , S, and
transmit S independent data streams to the S selected users. In
this case, the received signal of a selected user κb is given by

yκb =
√

Pt

S
hH

κb
ub +

√
Pt

S

∑
b′ �=b

hH
κb

ub′ + nκb , b = 1, · · · , S,

(53)

where κb = arg max1≤k≤K SINRk,b, SINRk,b =
ρM|a(θk )

H a(ϑb)|2
1+∑b′ �=b ρM|a(θk )

H a(ϑb′ )|2 , ρ = Pt
S is the per-user power of

each scheduled user, and the second term in the RHS of (53)
is the inter-beam or inter-user interference. The expected sum
rate of this RBF method is given by

RM =
S∑

b=1

Rκb , (54)

where the data rate of each scheduled user κb for beam b is
given by

Rκb = E

[
log

(
1 + max

1≤k≤K
SINRk,b

)]

= E

[
log

(
1 + ρM |a(θκb )

H a(ϑb)|2
1 +∑

b′ �=b ρM |a(θκb )
H a(ϑb′)|2

)]
.

(55)

We first introduce the following lemma necessary to derive the
asymptotic result regarding (54) and (55):

Lemma 2: For |θ̃k | ∈ (0, 1], we have an upper bound for
FM (θ̃), given by FM (θ̃k) ≤ 1

M|θ̃k | , where FM (·) is defined in
(10).

Proof: Since FM (θ̃k) and 1
M|θ̃k | are even functions, it is

enough to consider θ̃k ∈ (0, 1] only. From (10), we have an
upper bound of FM (θ̃k):

FM (θ̃k)
(a)≤ 1

M

1

sin πθ̃k
2

(b)≤ 1

M θ̃k

where (a) follows from | sin πθ̃k M
2 | ≤ 1 and sin πθ̃k

2 > 0 for
θ̃k ∈ (0, 1], and (b) follows from

1

θ̃k
− 1

sin πθ̃k
2

≥ 0 ⇐⇒ f (θ̃k) := sin
πθ̃k

2
− θ̃k ≥ 0.

The RHS is true because f (0) = f (1) = 0 with f ′′(θ̃k) =
−π2

4 sin πθ̃k
2 < 0 for θ̃k ∈ (0, 1]. �

Now the following theorem shows the asymptotic result on
the RBF per-user rate (55) when the total power Pt is fixed
regardless of S.

Theorem 4: For K = Mq , S = M� with q ∈ (0, 1) and � ∈
(0, q − ε

2 ), asymptotic upper and lower bounds on the per-user
rate Rκb of selected user κb for fixed total transmit power Pt =
1 are given by

log
(

1 + M2q−1−�−ε
)
�M Rκb �M log

(
1 + M2q−1−�+ε

)
(56)

for any sufficiently small ε > 0.

Proof: The flow of proof is to first find lower and upper
bounds on Rκb , denoted by L and U , respectively, and then to
show that the bounds L and U are asymptotically bounded as

log
(

1 + M2q−1−�−ε
)
�M L ≤ Rκb

≤ U �M log
(

1 + M2q−1−�+ε
)

.

(57)

To find L and U , we consider a virtual user selection method
based on maximizing signal power not SINR for each beam
a(ϑb), i.e.,

κ̃b = arg max
1≤k≤K

M |a(θk)
H a(ϑb)| for b = 1, · · · , S.

Since the user κ̃b is chosen based on maximizing signal power
only, we have SINRκ̃b,b ≤ SINRκb,b. Therefore, a lower bound
on Rκb can be obtained as

Rκb ≥ Rκ̃b = E

[
log

(
1 + ρZbb

1 + ρ
∑

b′ �=b Zbb′

)]
=: L (58)

where Zbb′ := M |a(θκ̃b)
H a(ϑb′))|2 for b′ = 1, · · · , S.

Furthermore, an upper bound on Rκb can be obtained by
simply ignoring the inter-beam interference as

Rκb ≤ E

[
log

(
1 + ρM |a (θκb

)H a (ϑb) |2
)]

≤ E
[
log (1 + ρZbb)

] =: U. (59)
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By modifying Theorem 1 to include ρ = 1/S = M−� in front
of Zbb and applying the modified theorem to U in (59), we
obtain

U �M log
(

1 + M2q−1−�+ε
)

. (60)

Hence, the claim on the upper bound follows.
Now consider the case of lower bound L . From the fact

that E[ f (X)] = Pr{A}E[ f (X)|A] + Pr{Ac}E[ f (X)|Ac] ≥
Pr{A}E[ f (X)|A] for a non-negative function f (X), L in (58)
with ρ = 1/S = M−� can be bounded as

E

[
log

(
1 + M−�Zbb

1 + M−�
∑

b′ �=b Zbb′

)]
≥ Pr{Zbb ≥ M p}

× E

[
log

(
1 + M−�Zbb

1 + M−�
∑

b′ �=b Zbb′

) ∣∣∣∣∣Zbb ≥ M p

]
.

(61)

Under the condition that {Zbb ≥ M p}, we have

|θκ̃b − ϑb| ≤ 1
π
4 M (1+p)/2

by (13) of Lemma 1. Therefore, |θκ̃b − ϑb′ | >

∣∣∣ 2
S − 1

π
4 M(1+p)/2

∣∣∣,
∀b′ �= b. Furthermore, we can re-arrange the indices of
{ϑb′ }b′ �=b in the order of closeness to ϑb with the new indices
{ j}. Then, we have

|θκ̃b − ϑ2 j−1|, |θκ̃b − ϑ2 j | >

∣∣∣∣ 2 j

M�
− 1

π
4 M (1+p)/2

∣∣∣∣ , (62)

since 2
S = 2

M� is the angular spacing between two adjacent
beams. We now have a lower bound on L , which is given by
the expression (63) shown at the bottom of the page, where
(a) holds by (61) and Lemma 2 with Zbj = M F2

M (θκ̃b − ϑ j );

(b) holds by (62); (c) holds because
∣∣∣ 2 j

M� − 1
π
4 M(1+p)/2

∣∣∣2 �M

∣∣∣ j
M�

∣∣∣2 for large M provided that � < (1 + p)/2; (d) follows

from
∑∞

j=1
1
j2 = π2

6 ; and the last step holds because Pr{Zbb ≥
M p} → 1 for p < 2q − 1 by (30) and π2 M�−1

3 → 0 for � < 1.
Hence the claim on the lower bound follows.

Note that the conditions used to derive (63) and (60) are p <

2q − 1, � < (1 + p)/2, and � < 1, and q and � are given. Set
p = 2q − 1 − ε for ε > 0. Then, � < q − ε/2 < 1 since q ∈
(0, 1). This concludes proof. �

In Theorem 4, the condition � < q − ε/2 < 1 guarantees that
the S beams are asymptotically orthonormal by (42) and there
exist more users than the number of beams in the cell by the
difference in the fractional orders q and �.

Now consider the sum rate (54) of the RBF scheme with
multi-beam multi-user selection. The result is summarized in
the following corollary to Theorem 4.

Corollary 2: Under the UR-SP channel model with constant
path gain and fixed total power at the BS, RBF achieves linear
sum rate scaling w.r.t. the number M of antennas when K and S
approach M , i.e. K , S ↑ M . Furthermore, RBF yields optimal
sum rate performance for large M , when K , S ↑ M .

Proof: The sum rate RM corresponding to Theorem 4
scales as M� log(1 + M2q−1−�) when 2q − 1 − � > 0. By
sending q ↑ 1 and � ↑ 1, i.e., K , S ↑ M , we have RM →
M log 2. Thus, RM achieves linear scaling w.r.t. M as K , S ↑
M . Furthermore, when K ≥ M , the capacity of the overall
downlink channel from the BS with M transmit antennas to
K single-antenna users is at most min(M, K ) log 2 = M log 2.
This is because from (55) the best per-user rate Rκb is log 2
for Pt = 1 when there is no interference, since ρ = 1/M for
Pt = 1. Thus, for large M , RBF achieves optimal sum rate
under the UR-SP channel model. �

The result in Corollary 2 is a significant difference from
the sum rate behavior (7) of the RBF method [8] in
large-scale MIMO, i.e., limK→∞ log K

M = 0, under the i.i.d.
Rayleigh fading channel model (5) representing rich scattering
environments. The major performance difference results from

L
(a)≥ Pr{Zbb ≥ M p} · E

⎡
⎣log

⎛
⎝1 + M−�Zbb

1 + M−�
∑

j �=b
1

M|θκ̃b −ϑ j |2

⎞
⎠
∣∣∣∣∣Zbb ≥ M p

⎤
⎦

(b)≥ Pr{Zbb ≥ M p} · E

⎡
⎢⎢⎢⎢⎢⎣log

⎛
⎜⎜⎜⎜⎜⎝1 + M−�Zbb

1 + M−�
∑ S

2
j=1

2

M

∣∣∣∣ 2 j
S − 1

π
4 M(1+p)/2

∣∣∣∣2

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
Zbb ≥ M p

⎤
⎥⎥⎥⎥⎥⎦

(c)
�M Pr{Zbb ≥ M p} · E

⎡
⎢⎣log

⎛
⎜⎝1 + M−�Zbb

1 + 2M�−1
∑ S

2
j=1

1
j2

⎞
⎟⎠
∣∣∣∣∣∣∣Zbb ≥ M p

⎤
⎥⎦

(d)≥ Pr{Zbb ≥ M p} · log

(
1 + M−�M p

1 + π2 M�−1

3

)

∼M log
(

1 + M p−�
)

, (63)
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the difference in degrees-of-freedom in the two channels, the
UR-SP channel (4) and the i.i.d. Rayleigh fading channel (5). In
the i.i.d. Rayleigh fading channel case, we have M independent
parameters and the channel vector is randomly located within a
ball in the M-dimensional space. Consider a cone around each
axis in the M-dimensional space so that channel vectors each
of which is contained in each of the cones are roughly orthog-
onal, as shown in Fig. 3 of [15]. Then, the probability that a
channel vector generated randomly according to (5) falls into
such a cone is exponentially decreasing as M increases (See
Appendix C). Hence, if the number K of users randomly dis-
tributed within the ball does not increases exponentially fast
w.r.t. the dimension M (i.e., limK→∞ log K

M = 0), it is difficult
to find M users whose channel vectors are contained in the M
roughly-orthogonal cones (one for each) [8], [10], [12] (the goal
of SUS [9], RBF [8] or ReDOS-PBR [15] scheduling is to find
such M users), and linear sum rate scaling by RBF w.r.t. the
dimension M (i.e., the number of antennas) is not attainable.
In the considered mm-wave MIMO with the UR-SP channel
model, however, the situation is quite different. Theorem 4 and
Corollary 2 state that linear sum rate scaling w.r.t. M is possible
only with K ↑ M in this case. This is because the degree-of-
freedom in the UR-SP channel model (4) with αk = 1 is one
regardless of the value of M . The orthogonality of the multi-
ple transmit beams is attained by simply dividing the line of
the normalized angle θ with length 2 by line segments each
with length 2/S = 2/M�. Thus, if K = Mq with q > �, there
exists sufficient users in each line segment one of which is
well matched to the transmit beam direction associated with
each line segment if 2q − 1 − � > 0. In fact, the channel matrix
composed of the channel vectors of the users scheduled in
such a way satisfies the asymptotically favorable propagation
condition in [20].

C. Performance Comparison: The Sparse User Regime and the
Fractional Rate Order

In this subsection, we compare the asymptotic performance
of the three schemes considered in the previous sections.
Previously, it is shown that RBF is optimal in sum rate for large
M when K , S approaching M under the UR-SP channel model.
When M is order of hundred as in massive MIMO, the number
K of active users in the cell may be smaller than M and the
network may be operated in the sparse user regime [29], [30].
In order to compare the relative performance in the sparse user
regime, where the sparse number of active users in the cell is
captured as the fractional power function K = Mq , 0 ≤ q ≤ 1,
we define the fractional rate order (FRO) γ as

γ := lim
M→∞

logR

log M
. (64)

Here, we assume αk = 1, ∀ k and Pt = 1. Note that R =
	(Mγ ) for γ �= 0. For γ > 0, R increases to infinity as M →
∞, whereas for γ < 0, R decreases to zero as M → ∞. Now

Fig. 2. Fractional rate order versus q

consider the three rates R = R1,RS , and RM . First, for the
single beam RDB rate R1 we have by Theorem 1 that

γ1 = lim
M→∞

logR1

log M
=
{

0, for q ∈ ( 1
2 , 1)

2q − 1 for q ∈ (0, 1
2 ),

(65)

where we used log(1 + x) = x for small x for the second
part. Next, for the multi-beam RDB scheme with single-user
selection, we have

γS = lim
M→∞

logRS

log M
= 0, for q ∈ (0, 1) (66)

by Theorem 3 with setting � such that 1/2 < � + q < 1. Here,
γS = 0 is achieved even for q ∈ (0, 1/2) because of added
�. Finally, we consider the multi-beam multi-user selection
RDB or RBF. In this case, RM = 	(M� log(1 + M2q−�−1))

from Theorem 4 and (54). Using M� log(1 + M2q−�−1) =
log(1 + 1/M−2q+�+1)M� M−2q+�+1−(−2q+�+1) = log(1 +

1
M−2q+�+1 )M−2q+�+1 M2q−1 ∼M M2q−1 by setting � such that
2q − 1 < � < q, we obtain

lim
M→∞

logRM

log M
= 2q − 1, for q ∈ (0, 1). (67)

Fig. 2 shows (65), (66) and (67) versus q ∈ (0, 1), and shows
which strategy is better for different q determining the number
of users in the cell relative to the number of transmit antennas.
RM has the largest FRO for q ∈ ( 1

2 , 1), whereas RS has the
largest FRO for q ∈ (0, 1

2 ). γ1 is a lower bound on both γS and
γM for all q ∈ (0, 1). Note that γM ↑ 1 as q ↑ 1, which shows
the optimality of RDB as mentioned already.

VI. NUMERICAL RESULTS

In this section, we provide some numerical results to validate
our asymptotic analysis in the previous sections. All the expec-
tations in the below are average over 5000 channel realizations
and we set Pt = 1.
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Fig. 3. The ratio of the RDB rate R1 to the rate with perfect CSI E[log(1 + maxk |αk |2 M)] versus q for different M : (a) αk = 1 and (b) αk ∼ CN(0, 1) .

Fig. 4. The RDB rate R1 versus M with αk ∼ CN(0, 1) for different q (log scale on x-axis): (a) q = 0.1, 0.2, · · · , 0.5 and (b) q = 0.6, 0.7, · · · , 1 .

A. The Single Beam Case

To verify the asymptotic analysis in Section IV, we consid-
ered a mm-wave MU-MISO downlink system with the UR-SP
channel model. Fig. 3(a) and (b) shows the value of E[1+Z ]

log(1+M)

versus q for M = 100, 500, 1000, 5000, 10000 for αk = 1
and αk ∼ CN(0, 1), respectively. It is seen that the curve of
E[1+Z ]

log(1+M)
versus q gradually converges to the theoretical line

of 2q − 1 for q > 1
2 and 0 for q ≤ 1

2 as M increases. Note that
there exist some gap between the theoretical asymptotic line
and the finite-sample results. This results from the slow rate
of convergence. Fig. 4(a) and (b) show the actual RDB rate
w.r.t. M for q = 0.1 to 0.5 and q = 0.6 to 1, respectively, in
the case of αk ∼ CN(0, 1). It is seen in Fig. 4(a) that the RDB
rate for q below 0.5 decreases as M increases, but it almost
remains the same when q = 0.5. On the other hand, it is seen
in Fig. 4(b) that the RDB rate for q above 0.5 increases as M
increases. (Since x-axis is in log scale, the rate curve is linear as

expected by Theorem 2 when q > 0.5.) The results in Figs. 3
and 4 coincide with Theorems 1 and 2.

B. The Multiple Beam Case

We first considered the multiple beam RDB with single user
selection. Fig. 5(a) and (b) show the ratio of the multiple beam
RDB rate RS with single-user selection to the rate with per-
fect CSI versus q for different � in the cases of αk = 1 and
αk ∼ CN(0, 1), respectively, when M = 1000. It is seen that
the simulation curves roughly match the theoretical lines. We
then verified the rate RS for q = 0.3 with different �. It is seen
in Fig. 6(a) that RS increases as M increases for the cases of � >

0.2 (i.e., q + � > 0.5), as predicted by Theorem 3. On the other
hand, the rate decreases for the case of � < 0.2 as M increases.
Finally, we verified the multi-beam multi-user selection RDB.
We set to q = 0.7 and used αk ∼ CN(0, 1), ∀ k. Fig. 6(b) shows
the per-user rate Rκb in Theorem 4 versus M for different �.



LEE et al.: RANDOMLY-DIRECTIONAL BEAMFORMING IN MILLIMETER-WAVE MULTIUSER MISO DOWNLINK 1097

Fig. 5. The ratio of RS to the rate with perfect CSI E[log(1 + maxk |αk |2 M)] versus q for different �: (a) αk = 1,∀k and (b) αk ∼ CN(0, 1), ∀k .

Fig. 6. (a) RS versus M (q = 0.3 and αk ∼ CN(0, 1)) (log scale on x-axis) and (b) the per-user rate of the multi-beam multi-user selection RDB versus M
(q = 0.7 and αk ∼ CN(0, 1)).

It is seen that the per-user rate Rκb increases when � < 0.4,
whereas it decreases when � > 0.4, as M increases, as predicted
by Theorem 4 (i.e., 2q − 1 − � > 0 or 2q − 1 − � < 0).

VII. CONCLUSION

We have considered RDB for millimeter-wave MU-MISO
and examined the associated MU gain, using asymptotic perfor-
mance analysis based on the UR-SP channel model which well
captures radio propagation channels with few multipaths in the
mm-wave band. We have shown that there exists a transition
point on the number of users relative to the number of transmit
antennas for non-trivial performance of the RDB scheme and
have identified the case in which downlink training and channel
estimation are important for good performance. We have also
shown that linear sum rate scaling w.r.t. the number of transmit
antennas can be achieved under the UR-SP channel model by
RBF based on multiple beams equi-spaced in the angle domain
and proper user scheduling, if the number of users in the cell
increases linearly w.r.t. the number of transmit antennas. We

have compared three RDB schemes composed of beamform-
ing and user scheduling based on the newly defined fractional
rate order, yielding insights into the most effective beamform-
ing and scheduling choices for mm-wave MU-MISO in various
operating conditions. Simulation results validate our theoretical
analysis. The results here are based on the simplified UR-SP
channel model capturing high propagation directivity, and thus
extension to a general multipath channel model is left as future
work.

APPENDIX A
DISTRIBUTION OF ϑ − θk

Since ϑ, θk
i.i.d.∼ Unif[−1, 1], the difference random variable

θ̃k has the distribution, given by

p(θ̃) =
{

1
4 θ̃ + 1

2 , −2 ≤ θ̃ ≤ 0

− 1
4 θ̃ + 1

2 , 0 ≤ θ̃ ≤ 2.
(68)

For any function f (θ̃) with the periodicity of period two, we
have f (θ̃) = f (θ̃ + 2) for θ̃ ∈ [−1, 0] and f (θ̃) = f (θ̃ − 2)
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for θ̃ ∈ [0, 1]. Therefore, we can regard p(θ̃) on the function
f (θ̃) as

p(θ̃) =
{

1
4 θ̃ + 1

2 − 1
4 θ̃ , −1 ≤ θ̃ ≤ 0

− 1
4 θ̃ + 1

2 + 1
4 θ̃ , 0 ≤ θ̃ ≤ 1

(69)

i.e., θ̃ ∼ Unif[−1, 1].

APPENDIX B
PROOF OF THEOREM 2

Before proving Theorem 2, we prove another interesting
lemma of which proof is partly used in proof of Theorem 2.

Lemma 3: For K = Mq , q ∈ ( 1
2 , 1) and αk

i.i.d.∼ CN(0, 1),
we have

lim
M→∞

R1

E
[
log

(
1 + |αk′ |2 Zk′

)] = 1, (70)

where k′ = arg maxk Zk , and R1 is the optimal RDB rate in (9)
considering the random path gain.

Proof: R1 is bounded as

E[log(1 + |αk′ |2 Zk′)] ≤ R1

≤ E

[
log

(
1 +

(
max

k
|αk |2

)
Zk′

)]
. (71)

Eq. (22) in Theorem 1 can easily be modified to

log
(

1 + βM2q−1−ε
)
�M E

[
log (1 + βZ)

]
�M log

(
1 + βM2q−1+ε

)
(72)

for q ∈ ( 1
2 , 1) and β > 0. Note that E[log(1 + |αk′ |2 Zk′)] =

E[E[log(1 + |αk′ |2 Zk′) | |αk′ |2]] by the law of iterated expec-
tations. Applying the lower bound in (72) to E[log(1 +
|αk′ |2 Zk′) | |αk′ |2], we have

E

[
log

(
1 + |αk′ |2 M2q−1−ε

)]
�M E

[
log

(
1 + |αk′ |2 Zk′

)]
.

(73)

For q ∈ ( 1
2 , 1), we have

E

[
log

(
1 + |αk′ |2 M2q−1−ε

)]
∼M E

[
log

(
|αk′ |2 M2q−1−ε

)]
= E

[
log |αk′ |2

]
+ (2q − 1 − ε) log M

∼M (2q − 1 − ε) log M (74)

for any sufficiently small ε > 0 such that 2q − 1 − ε > 0.
Since |αk′ |2 ∼ χ2(2), E[log |αk′ |2] is a constant.

Now consider the upper bound in (71). Again apply-
ing the law of iterated expectations and the upper
bound in (72), we have E

[
log

(
1 + (

maxk |αk |2
)

Zk′
)] ≤

E
[
log

(
1 + (

maxk |αk |2
)

M2q−1+ε
)]

. From the fact that

E[log(1 + maxk |αk |2)] ∼M log(log K ) [8], the above bound
can further be simplified as

E

[
log

(
1 +

(
max

k
|αk |2

)
Zk′

)]

�M log
(

M2q−1+ε log K
)

∼M (2q − 1 + ε) log M + log(log M). (75)

Dividing (71) by E[log(1 + |αk′ |2 Zk′)], we have

1 ≤ R1

E[log(1 + |αk′ |2 Zk′)]

≤ E
[
log

(
1 + (

maxk |αk |2
)

Zk′
)]

E[log(1 + |αk′ |2 Zk′)]
(a)

�M
(2q − 1 + ε) log M + log log M

(2q − 1 − ε) log M

∼M
2q − 1 + ε

2q − 1 − ε
(76)

where step (a) follows from (74) and (75). Since (76) holds for
any small ε > 0, the claim follows. �

Proof of Theorem 2: By (71), (74), and (75), we have

(2q − 1 − ε) log M �M R1 �M (2q − 1 + ε) log M

+ log log M.

Dividing the above equation by E[log(1 + M maxk |αk |2)]
and using the fact that E[log(1 + M maxk |αk |2)] ∼M log M +
log log M [8], we have

(2q − 1 − ε) log M

log M + log log M
�M

R1

E
[
log

(
1 + M maxk |αk |2

)]
�M

(2q − 1 + ε) log M + log log M

log M + log log M

for arbitrarily and sufficiently small ε > 0. Hence, we have

2q − 1 − ε �M
R1

E
[
log

(
1 + M maxk |αk |2

)] �M 2q − 1 + ε.

(77)

Now consider the case of q ∈ (0, 1
2 ). In this case, Eq. (22) in

Theorem 1 can be modified to

βM2q−1−ε �M E
[
log (1 + βZ)

]
�M βM2q−1+ε (78)

for β > 0 and sufficiently small ε > 0 such that 2q − 1 + ε <

0, since log(1 + βM2q−1±ε) ∼M βM2q−1±ε from log(1 +
x) → x as x → 0. Again applying the law of iterated expec-
tations and the upper bound in (78), R1 is upper bounded
as

R1 ≤ E

[
log

(
1 +

(
max

k
|αk |2

)
Zk′

)]
(79)

�M E

(
max

k
|α2

k |
)

M2q−1+ε (80)

∼M (q log M)M2q−1+ε → 0 (81)

as M → ∞. This concludes the proof. �
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APPENDIX C
PROBABILITY OF FINDING QUASI-ORTHOGONAL USERS IN

THE RAYLEIGH FADING CASE

A double cone (or cone) C j around each axis j in the M-
dimensional space is defined as

C j (η) =
{

h : |hH e j |
‖h‖ ≥ η

}
, (82)

where e j is the j-th column of the M × M identity matrix,
and η ∈ (0, 1). The probability that the channel vector hk ∼
CN(0, IM ) is contained in the cone C j is given by

Pr{hk ∈ C j (η)} = Pr{|hk, j | ≥ η‖hk‖}
(a)≈ Pr{|hk, j |2 ≥ η2 M}
(b)= e−η2 M (83)

where (a) becomes tight for large M due to ‖hk‖2/M → 1, and
(b) holds by |hk, j |2 ∼ χ2(2). Therefore, the probability that the
cone C j contains at least one out of the K channel vectors is
given by

Pr{C j �= ∅} = 1 − Pr{C j = ∅}
= 1 − Pr{hk /∈ C j }K

≈ 1 −
(

1 − 1

eη2 M

)K

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for limM,K→∞ log K
M = ∞

c1, for K = 	(exp(η2 M)),

or M = 	(log K )

0, for limM,K→∞ log K
M = 0

(84)

as M, K → ∞, where c1 ∈ (0, 1) is a constant. This is the
physical intuition behind the results in [8].
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