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Beam Tracking for Interference Alignment in Time-Varying MIMO

Interference Channels: A Conjugate Gradient Based Approach
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Abstract

In this correspondence, an adaptive beam tracking algorithm for interference alignment in time-varying multiple-input and

multiple-output interference channels is presented. It isshown that obtaining a set of interference-aligning transmit beamforming

matrices is equivalent to minimizing a certain Rayleigh quotient, and an approach based on the conjugate gradient method

combined with metric projection is applied to this minimization problem to construct an adaptive algorithm for interference-

aligning beam design. The convergence of the proposed algorithm in static channels is established and the steady-statebehavior

of the proposed algorithm in time-varying channels is investigated by numerical simulations. The performance of the proposed

algorithm is evaluated numerically and numerical results show that the proposed algorithm performs well with low computational

complexity.

Index Terms
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I. I NTRODUCTION

Since Cadambe and Jafar showed that interference alignment (IA) achieves the maximum

number of degrees of freedom (DoF) in multiuser interference channels [2], many practical

and efficient beam design algorithms for IA have been developed for static multiple-input and

multiple-output (MIMO) interference channels, e.g., [3],[4], [5], [6]. In this correspondence, we

consider the beam design for IA in time-varying MIMO interference channels. In the time-varying

channel case, designing a set of interference-aligning beamforming matrices at each time step

requires high computational complexity if it is designed byapplying one of the existing beam
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design algorithms devised for static channels to each time step afresh. To eliminate such heavy

computational burden in the time-varying case, Yuet al. proposed an efficient beam tracking

algorithm for IA [7] based on the eigenvector perturbation theory and their work of a least squares

approach to IA [6]. In their method, the beam solution at one time step is obtained as the sum

of that at the reference time step and a perturbation term derived from the channel difference

between the two time steps. However, the tracking method is not a purely adaptive algorithm

and requires a full eigen-decomposition periodically to provide a reference beam solution to

which the perturbation term is added at each time step duringthe tracking interval, and shows

performance degradation in the case of multiple data streams per user. In this correspondence,

we propose a new purelyadaptive beam design algorithm for IA that works in both static and

slowly-fading MIMO interference channels and performs well even in the multiple stream case.

The new algorithm is also based on the least squares approachto IA in [6], but here we modify

the conjugate gradient (CG) descent method [8] by incorporating metric projection and apply

the modified CG method to obtain an updated beam solution.

Vectors and matrices are written in boldface with matrices in capitals. All vectors are column

vectors. For a matrixA, AT , AH , and A† indicate the transpose, Hermitian transpose, and

pseudo-inverse ofA, respectively.vec(A) denotes the vector composed of the columns ofA.

C(A) andC⊥(A) denote the column space ofA and its orthogonal complement, respectively. We

use‖a‖ for 2-norm of vectora. I and0 stand for the identity and all-zero matrices, respectively.

The notationx ∼ CN (µ,Σ) means thatx is complex Gaussian distributed with mean vectorµ

and covariance matrixΣ.

II. SYSTEM MODEL AND PRELIMINARIES

We consider aK-pairNr×Nt MIMO interference channel in which transmitters and receivers

haveNt andNr antennas, respectively. In this interference network, thereceived signal at receiver

k at timen is given by

yk[n] = Hkk[n]Vk[n]sk[n] +
K
∑

l=1, l 6=k

Hkl[n]Vl[n]sl[n] + nk[n], (1)

whereHkl[n] is theNr ×Nt MIMO channel matrix at timen from transmitterl to receiverk,

Vl[n] and sl[n] are theNt × dl beamforming matrix and thedl × 1 signal vector at transmitter

l, respectively, andnk[n] ∼ CN (0, σ2I) is the zero-mean complex Gaussian noise vector at
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receiverk. We assumed1 = · · · = dK = d (≥ 1) and that the channel information is known to

the transmitters and the receivers. For the time-varying channel model, we consider the widely-

used Gauss-Markov channel model given by [9]

Hkl[n+ 1] = βHkl[n] +
√

1− β2Wkl[n+ 1], (2)

for each(k, l), whereβ (∈ [0, 1]) is the fading coefficient,vec(Wkl[n + 1]) ∼ CN (0, I), and

vec(Hkl[0]) ∼ CN (0, I) (Wkl[n+ 1] andHkl[0] are both independent over(k, l)).

Whereas the condition for IA is expressed as a set of bilinear equations in [10], the same

condition can be expressed asa system of linear equations with dummy variables, given by [6]

H̃[n]v[n] = 0, (3)

wherev[n] ,
[

vec(V1[n])
T , · · · , vec(VK [n])

T
]T

is theKNtd× 1 aggregated beam vector, and

H̃[n] is defined as (4) with sizeK(K − 2)Nrd×KNtd.

The key advantage of this formulation is that a set{V1[n], · · · ,VK [n]} of beamforming

matrices achieving IA in an IA-feasible case or achieving approximate IA in an IA-infeasible case

can be obtained by minimizing||H̃[n]v[n]||2 under a norm constraint onv[n]. When{Akl[n]}

are given, the beam vectors are obtained by solving [6]

min
||v[n]||=1

||H̃[n]v[n]||2 = min
||v[n]||=1

vH [n]Φ[n]v[n], (5)
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whereΦ[n] , H̃H [n]H̃[n]. When{Vl[n]} (which can be constructed fromv[n]) are given, on

the other hand, the dummy variables{Akl[n]} insideH̃[n] are given in closed form by [6]






A1l[n] = (H1l[n]Vl[n])
†H12[n]V2[n], l = 3, · · · , K,

Akl[n] = (Hkl[n]Vl[n])
†Hk1[n]V1[n], k, l = 2, · · · , K, l 6= k.

(6)

Here,{Akl[n]} is determined so that{Akl[n]} is the least squares solution to minimize‖H̃[n]v[n]‖2.

Thus, a set of interference-aligning (or approximately interference-aligning in an infeasible

case) beamforming matrices can be obtained by solving (5) and (6) iteratively with a proper

initialization of v[n] for given n. It is shown in [7] thatH̃[n] has nullity d with a properly

chosen set{Akl[n]} when IA is feasible and such a set can be found by solving (5) and (6)

iteratively.

Note thatv[n] =
[

vec(V1[n])
T , · · · , vec(VK [n])

T
]T

. Thus, one might think that obtaining

one null vectorvm[n] of H̃[n] (or Φ[n]) would yield all d beam vectors for thed streams of

each user for interference alignment. However, this is not true. Due to the special structure of

H̃[n], a null vectorvm[n] of H̃[n] has the structure ofvm[n] = [aT
m1 ⊗ qT

m1, · · · , a
T
mK ⊗ qT

mK ]
T ,

where⊗ is the Kroncker product,amk has sized × 1 and qmk has sizeNt × 1. Hence, the

d subvectors for each user obtained fromvm[n] are identical after scaling. However,̃H[n] (or

Φ[n]) has nullity d and hence it hasd null vectorsv1[n], · · · ,vd[n]. The d beam vectors for

each user can be obtained from thesed null vectors. (See [7] for detail.)

III. A DAPTIVE BEAM TRACKING FOR INTERFERENCEALIGNMENT

In this section, we propose an adaptive algorithm for obtaining a set of interference-aligning

beamforming matrices based on (5) and (6). Since thed beam vectors for each user achieving

(approximate) IA are given by thed eigenvectors ofΦ[n] corresponding to thed smallest

eigenvalues,1 we need to find thesed eigenvectors in an adaptiver manner. First, the smallest

eigenvalue and the corresponding eigenvector ofΦ[n] under a unit-norm constraint on the

eigenvector are obtained by simply solving (5). On the otherhand, finding the second smallest

and following eigenvalues and eigenvectors needs more elaboration. Note thatΦ[n] is a Hermitian

matrix and thus its eigenvectors are orthonormal by the spectral theorem. Hence, the eigenvector

1The same eigenvalue is counted according to its geometric multiplicity.
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corresponding to thej-th smallest eigenvalue is obtained by solving

min
v[n]:v[n]⊥{v̆1[n],··· ,v̆j−1[n]},‖v[n]‖=1

vH [n]Φ[n]v[n], (7)

wherev̆1[n], · · · , v̆j−1[n] are thej− 1 eigenvectors ofΦ[n] corresponding to thej− 1 smallest

eigenvalues. Thus, (5) and (7) should be solved in an efficient adaptive way. To this end, first

note that finding the smallest eigenvalue and the corresponding eigenvector ofΦ[n] in (5) under

the unit-norm constraint on the eigenvector is equivalent to obtaining the minimum value of the

Rayleigh quotient

R(Φ[n],v[n])
∆
=

v[n]HΦ[n]v[n]

vH [n]v[n]
. (8)

This Rayleigh quotient minimization problem can be solved adaptively by applying a gradient

descent method. Among various descent methods, we adopt theconjugate gradient (CG) descent

which is suitable for HermitianΦ[n], does not require matrix inversion as the Newton method,

and shows fast convergence [8]. On the other hand, in the problem (7), the minimization under

the unit-norm constraint part is equivalent to (8) but we have an additional constraint thatv[n] is

constained in the orthogonal complement of the span ofv̆1[n], · · · , v̆j−1[n]. To solve this problem

adaptively, we apply projection to the gradient descent [11] and propose a projected conjugate

gradient method that consists of two steps: the first step is aCG descent step for cost reduction

and the second step is projection of the CG step output onto theorthogonal complement of the

span ofv̆1[n], · · · , v̆j−1[n]. Here, tracking of each of thed smallest eigenvectors is performed

sequentially. That is, thej − 1 eigenvectors̆v1[n], · · · , v̆j−1[n] for the adaptive tracking of the

j-th eigenvector come from the adaptive tracking of the firstj−1 eigenvectors. Together with the

dummy variable update (6), the CG descent applied to the minimization of (8) combined with

projection provides an efficient adaptive beam design algorithm for IA in static and time-varying

channels, which is described in Algorithm 1. The CG subroutine from [8] is modified to include

the projection step and described below:

CG subroutine (v, Φ, Π⊥
S , N1)

Initialization: x(0) = v, b(0) = 0, andλ(0) = x(0)HΦx(0)
||x(0)||2

for k = 0, 1, · · · , N1 − 1

Step 1. If k = 0, thenr(0) = p(0) = λ(0)x(0)−Φx(0)
||x(0)||2 .

Step 2. Compute t(k) = (−B+
√
B2−4CD)
2D

, where B = p(k)HΦp(k)
||x(k)||2 − λ(k)p(k)

Hp(k)
||x(k)||2 , C =

p(k)HΦx(k)
||x(k)||2 − λ(k)p(k)

Hx(k)
||x(k)||2 , andD = p(k)HΦp(k)

||x(k)||2
p(k)HΦx(k)

||x(k)||2 − p(k)HΦx(k)
||x(k)||2

p(k)Hp(k)
||x(k)||2 .
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Algorithm 1 The Conjugate Gradient Algorithm for Interference Alignment (CGIA)
Require: Initialize {Akl[0]} and v̂1[0], · · · , v̂d[0].

while n = 0, 1, · · · do

ConstructΦ[n] = H̃H [n]H̃[n] with {Akl[n− 1]} and{Hkl[n]}.

Updatev̂1[n], · · · , v̂d[n] as follows.

S = [ ]

for m = 1 to d do

Π⊥
S = (I− S(SHS)−1SH)

v̂m[n] = CG subroutine(v̂m[n− 1],Φ[n],Π⊥
S , N1)

S = [S, v̂m[n]]

end for

Obtain{Vk[n]} from v̂1[n], · · · , v̂d[n]. (Step *) (See [7] for this step.)

If mod(n,N2) = 0, then update{Akl[n]} by (6). Otherwise,{Akl[n] = Akl[n− 1]}.

end while

Step 3. Update the desired vector:x(k + 1) = x(k) + t(k)p(k)

Step 4. Projection:x(k + 1) = Π⊥
Sx(k + 1)

Step 5. Computeλ(k + 1) = x(k+1)HΦx(k+1)
||x(k+1)||2

Step 6. Obtain the residual:r(k + 1) = λ(k+1)x(k+1)−Φx(k+1)
||x(k+1)||2

Step 7. Update the direction:p(k + 1) = r(k + 1)− r(k+1)HΦp(k)
p(k)HΦp(k)

p(k)

Output: v′ = x(N1)

In Algorithm 1, a subvector normalization step can be added to Step * without disturbing

the solution structure when IA is feasible. This is easy to see in the case ofd = 1. (In this

case,Akl = akl simply.) Suppose thatv = [vT
1 , · · · , vT

K ]
T and{akl} are a solution to (3). Then,

v′ = [η1vT
1 , · · · , ηKv

T
K ]

T and{ηlakl/ηj, j = 2 if k = 1, j = 1 if k 6= 1} are also a solution to

(3). This is also valid in the case ofd > 1. In CGIA, we have freedom to design(N1, N2), where

N1 is the number2 of CG updates per time step, andN2 is the period of dummy variable updates.

2WhenN1 = 1, the CG step is simple gradient descent. Thus, whenN1 = 1, the proposed method for each of thed smallest

eigenvectors reduces to the projected gradient method of Goldstein [11]. The proposed algorithm here can be used to general

multiple extreme eigenvector tracking for a Rayleigh quotient beyond the considered problem here.
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N1 andN2 should be properly designed to yield a desired trade-off between performance and

complexity.

IV. A NALYSIS OF CGIA

In this section, we investigate the properties of the proposed CGIA algorithm. (For notational

simplicity, the time index is omitted if unnecessary.) First, note that CGIA updates the beam

vectors so that the Rayleigh quotient (8) (or, equivalently,||H̃[n]v[n]||2 under the unit norm

constraint onv[n]) is minimized. However, the interference metric of interest is the interfer-

ence leakageγk at receiverk defined as the portion of the total interference power leaking

into the signal space [10], i.e.,γk
∆
=

∑Nr

i=d+1 λi(Γk)/
∑Nr

i=1 λi(Γk), where λ1(Γk) ≥ · · · ≥

λNr
(Γk) are the ordered eigenvalues of theNr × Nr interference covariance matrixΓk =

∑

l 6=k HklVlV
H
l H

H
kl at receiverk. Here, the subspace spanned by the eigenvectors corresponding

to λ1(Γk), · · · , λd(Γk) is assumed to be the interference subspace, and the remaining subspace

corresponding toλd+1(Γk), · · · , λNr
(Γk) is assumed to be the subspace intended for the desired

signal. As the Rayleigh quotient given by (8) decreases, it isdesirable for the interference leakage

also to decrease. This desired property is shown in the following proposition.

Proposition 1: For generalK andd, if the Rayleigh quotientR in (8) goes to zero, then the

interference leakageγk at receiverk goes to zero for allk = 1, · · · , K.

Proof: See the appendix.

Thus, by making the Rayleigh quotient (8) small we can make theinterference leakage at each

receiver small. With the desired property assured, we now investigate the convergence property

of CGIA. The convergence of CGIA in static channels is established in the following proposition.

Proposition 2: The CGIA algorithm converges for any initial condition and(N1, N2) for time-

invariant channels.

Proof: See the appendix.

Since CGIA converges for any initialization in static channels, CGIA is stable in static chan-

nels. Next, we consider the stability and steady-state behavior of the algorithm in time-varying

channels. In the case of standard CG methods, the stability was analyzed in [12]. However, the

existing analysis approaches cannot be applied to the proposed CGIA algorithm since it includes

not only the CG step but also the dummy variable update step. A rigorous proof of stability in

time-varying channels is difficult. However, in [13], underthe first order AR channel model (2),
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the stability of CGIA is analyzed in the case ofd = 1 (Akl[n] = akl[n]) under several strong

assumptions by showing that the Rayleigh quotient does not increase as time elapses. Here, we

briefly explain the idea. At the end of time stepn, we have{v[n], akl[n]}, and the corresponding

minimum Rayleigh quotient is determined byΦ(Hkl[n],akl[n])
∆
= H̃H

(Hkl[n],akl[n])
H̃(Hkl[n],akl[n]), where

H̃(Hkl[n1],akl[n2]) denotes the matrix̃H in (4) constructed withHkl[n1] andakl[n2]. At time step

n + 1, first the matrixH̃ is perturbed to becomẽH(Hkl[n+1],akl[n]), and then CGIA updates the

beam vector asv[n+ 1] by finding the minimum eigenvalue and the corresponding eigenvector

of Φ(Hkl[n+1],akl[n]) with the CG step. After this CG step, the minimum Rayleigh quotient or

equivalently the minimum eigenvalue ofΦ(Hkl[n+1],akl[n]) may increase from that ofΦ(Hkl[n],akl[n]).

However, the following dummy variable update step always reduces the minimum Rayleigh

quotient by updating{akl[n+1]} optimally. At the end of time stepn+1, the minimum Rayleigh

quotient is given by that determined byΦ(Hkl[n+1],akl[n+1]). Thus, if the increase in the minimum

Rayleigh quotient caused by the change fromΦ(Hkl[n],akl[n]) to Φ(Hkl[n+1],akl[n]) after the channel

variation/CG step is compensated for by the decrease in the minimum Rayleigh quotient caused

by the change fromΦ(Hkl[n+1],akl[n]) to Φ(Hkl[n+1],akl[n+1]) after the dummy variable update step,

the algorithm is stable and shows the steady-state behaviorwhen these two quantities are equal.

The stability condition can be summarized as

c1
√

1− β ≤ c2R(Φ(Hkl[n+1],akl[n]),v[n+ 1])) + δ (9)

for someδ ≥ 0, where the left-hand side (LHS) term in (9) denotes an upper bound on the

Rayleigh quotient increase in the channel variation/CG step obtained by applying perturbation

theory to the eigenvalues ofΦ(Hkl[n+1],akl[n]) and the right-hand side (RHS) term of (9) denotes

the reduction in the Rayleigh quotient by the dummy variable update step obtained by a geo-

metrical interpretation of the update of the dummy variables under several assumptions. With

the expression, it can be seen that the faster fading rate forms the higher level of steady state

Rayleigh quotient (or equivalently the interference leakage). Although some strong assumption

in [13] for obtaining (9) may not be justified, simulations show that CGIA is indeed stable

and shows a good steady-state behavior in most time-varyingchannels and the steady-state

interference leakage increases with the mobile speed, as shown in Section V.

Finally, the complexity of CGIA is analyzed in terms of the number of complex multiplications.

The main advantage of CGIA over the existing approaches is computational efficiency. The
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computational complexity of CGIA and other algorithms including the perturbation approach [7]

and the interative interference alighment (IIA) algorithm[10] is shown in Table I. For CGIA, we

can make a trade-off between complexity and performance by adjusting parameters(N1, N2).

For example, in the case of low operating SNR and mobile speeds, it is not necessary to use

largeN1. Even with the small number of CG steps, i.e., smallN1, the algorithm can achieve a

residual interference level lower than the thermal noise for a normal range of operating SNR,

when IA is feasible.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to evaluate the performance of CGIA.

Throughout the simulations, we generated a first-order Gauss-Markov channel process described

in (2) for each user independently with 1GHz carrier frequency and 66.7µs symbol duration (the

symbol duration of 3GPP LTE) and evaluated the performance of CGIA.

First, to see the convergence speed of CGIA, we ran the algorithm in two cases: (a) a single

stream case ofK = 4, Nt = 3, Nr = 2, d = 1 for which IA is feasible but does not have a

closed-form solution and (b) a two stream case ofK = 3, Nt = Nr = 4, d = 2. Figs. 1 (a)

and (b) show the interference leakage obtained by CGIA as timeelapses in the two cases. It is

seen that CGIA converges and then reaches the steady state fast in both the single-stream and

two-stream cases. As expected, the steady-state leakage level is formed at a higher level for a

higher mobile speed. The attained leakage level also depended on(N1, N2). The(N1, N2) values

shown in the figure were chosen to yield a sufficiently low leakage level around10−4 ∼ 10−5

at low mobile speeds.

Fig. 2 shows an example of the complexity of several beam design methods for IA including

the IIA algorithm in [10], the iterative LS (ILS) algorithm in [6], and the tracking algorithm

based on a perturbations approach in [7] with an eigen-decomposition every 10 symbols, in the

same setup as that in Fig. 1 (a). (The slope of IIA correspondsto the case of 100 iterations

per time step. 100 iterations per time step showed reasonable convergence in the considered

case.) As seen in Fig. 2, the perturbations approach has the smallest slope; the slopes of the

non-recursive methods are not comparable to the methods exploiting the channel coherence.

However, the advantage of CGIA over the perturbations approach is shown next.

Fig. 3 shows the sum rate performance of CGIA with respect to SNR in three cases:K = 3,

Nt = Nr = 2, d = 1; K = 4, Nt = 3, Nr = 2, d = 1; andK = 3, Nt = Nr = 4, d = 2. In all the
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cases, the non-recursive IIA algorithm in [3] run at the static channel was used as a performance

reference. In this method, we ran the IIA algorithm with 1000iterations allowing sufficient

convergence. First, the result for the two single-stream cases is shown in Fig. 3 (a). It is seen in

Fig. 3 (a) that CGIA yields almost the same performance as the non-recursive IIA algorithm in

the state channel case (i.e., 0 km/h). (In the static channelcase, the two methods used the same

channel.) It is also seen that the performance degradation of CGIA due to the mobile speed is not

significant, when the mobile speed is low, and the performance degradation is noticeable at high

SNR and high mobile speed. Next, the result for the two-stream case is shown in Fig. 3 (b). Here,

we considered the non-recursive IIA algorithm again as a performance reference, the tracking

algorithm based on eigenvector perturbation in [7] (denoted as the least squares with iteration and

tracking (LSINT) algorithm), and CGIA. For LSINT, an eigen-decomposition is applied every

10 symbols. In the static case, the three algorithms used thesame channel. It is seen in the static-

channel two-stream case that CGIA performs almost the same asIIA whereas LSINT performs

a bit worse than the other two algorithms. It is seen that on the contray to the single-stream

case, the performance degradation due to mobile speed increase is negligible for CGIA even at

high SNR in the two-stream case. However, LSINT shows severeperformance degradation as the

mobile speed increases. Althought it is not shown here due tospace limitations, LSINT performs

similarly well in the single-stream case. This means that multi-dimensional subspace tracking

based on eigen-space perturbation used for LSINT is sensitive and error accumulates quickly as

time elapses. Thus, CGIA is advantageous for IA beam trackingin multi-stream cases.

VI. CONCLUSIONS

In this correspondence, we have proposed CGIA for transmit beam tracking for interference

alignment in time-varing MIMO interference channels. We have established the convergence of

CGIA for static channels and have investigated its steady-state behavior numerically in the

time-varying channel case. Numerical results show that CGIAconverges fast and performs

well for time-varying MIMO interference channels with significantly reduced computational

complexity. CGIA provides an alternative adaptive algorithm for interference alignment with

significant complexity reduction and comparable sum rate performance in time-varying MIMO

interference channels.
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APPENDIX

Proof of Proposition 1: The Rayleigh quotientR is equivalent to||H̃v||2 under the constraint

||v|| = 1. Exploiting the structure of̃H in (4), we can rewrite||H̃v||2 as

R = ||H̃v||2 =
K
∑

l=3

||H12V2 −H1lVlA
T
1l||

2 +
K
∑

k=2

K
∑

l=1,l 6=1,l 6=k

||Hk1V1 −HklVlA
T
kl||

2. (10)

(Basically, the IA condition (3) is obtained so as to align theinterference from an unwanted

transmitter to receiver 1 to the reference subspaceH12V2 and to align the interference from an

unwanted transmitter to receiverk( 6= 1) to the reference subspaceHk1V1. Note that the matrix

Akl is for subspace equivalence. [6]) Now, asR ↓ 0, the interference aligns since each term in

the RHS of (10) is non-negative and hence, the rank of theNr × Nr interference covariance

matrix Γk at receiverk, given by

Γk =
K
∑

i 6=k

HkiViV
H
i H

H
ki,

becomesd eventually. Therefore, the smallestNr − d eigenvalues ofΓk goes to zero asR ↓ 0.

So does the interference leakageγk at receiverk for all k by the definition ofγk. �

Proof of Proposition 2: First, consider the tracking of the smallest eigenvalue and the cor-

responding eigenvector. For givenHkl[n] andAkl[n], the CG update, which computes the new

beam vector̂v1[n] minimizing the Rayleigh quotient, does not increase the Rayleigh quotient,

i.e.,

R (Φ(Hkl[n],Akl[n− 1]), v̂1[n− 1]) ≥ R (Φ(Hkl[n],Akl[n− 1]), v̂1[n]) .

Furthermore, given{Vl[n]} constructed fromv̂1[n], · · · , v̂d[n], it was proved in [6] that the

dummy variable update (6) does not increase the Rayleigh quotient since (6) itself is the least

squares solution to minimize the Rayleigh quotient as a function of Akl, i.e.,

R(Φ(Hkl[n],Akl[n− 1]), v̂1[n]) ≥ R(Φ(Hkl[n],Akl[n]), v̂1[n]).

By the two inequalities, the Rayleigh quotient for the smallest eigenvector monotonically de-

creases for CGIA, regardless of the value of(N1, N2), but the Rayleigh quotient is lower bounded

by zero becauseΦ is a semi-positive definite matrix. Thus, the smallest eigenvector and the

corresponding eigenvector of CGIA converges by the monotoneconvergence theorem. Next,

consider the second smallest eigenvalue and the corresponding eigenvector̂v2[n]. Since the first
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eigvenvectorv̂1[n] converges, the subspaceC⊥(v̂1[n]) converges too. Then, we can apply the

same monotone convergence argument to the tracking of the second smallest eigenvalue and

the corresponding eigenvector used in the proof of the convergence of the first eigenvalue and

eigenvector, since the tracking of the second eigenvalue and eigenvector is the same as that of

the first eigenvalue and eigenvector except that the space isconfined inC⊥(v̂1[n]). We can apply

the same argument sequentially3 to the tracking of them-th smallest eigenvalue and eigenvector

for m ≤ d < ∞. �
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TABLE I

COMPUTATIONAL COMPLEXITY FOR THEK-PAIR (Nr, Nt) MIMO IC WITH d DATA STREAMS PER USER(J IS THE NUMBER

OF ITERATIONS TO OBTAIN INITIAL BEAM VECTORS IN THE EIGENDECOMPOSITION PHASE OF THE PERTURBATION

APPROACH ANDLQR IS THE NUMBER OF ITERATIONS FOR THE ITERATIVEQR ALGORITHM .)

Algorithm Major Computation Complex multiplications

ComputeΦ = H̃
H
H̃

3
2

(

K(K − 1)(K − 2)Ntd(Ntd+1)
2

Nrd
)

+K(K − 2)NtNrd
2

Compute B,C,D in CG subroutine N1 × (2KNtd+ 2)

CGIA Computet(k) in CG subroutine N1 × (4KNtd+K2N2
t d

2)

Projection step in CG subroutine N1 × ((d+ 1)(2d2 − 5d+ 6)/6 +KNtd(2d
2 + 6d− 11)/6 + Σd

k=2k!)

Computeλ in CG subroutine N1 × (2KNtd+K2N2
t d

2)

Computer in CG subroutine N1 × (KNtd)

DetermineAkl (everyN2 time steps) NtNrd+ 3Nrd
2 + (d+ 1)! + d2

- Eigen-decomposition phase -

ComputeH̃H
H̃ J

{

3
2

(

K(K − 1)(K − 2)Ntd(Ntd+1)
2

Nrd
)

+K(K − 2)NtNrd
2
}

Iterative QR method (J − 1)
{

LQR(K
2N2

t d
2)
}

Perturbations Determine{A(i)
kl } (J − 1)

{

NtNrd+ 3Nrd
2 + (d+ 1)! + d2

}

approach [7] Eigen-decomposition 13
3
(KNtd)

3

- Tracking phase -

ConstructGm[n] 3
2

(

K(K − 1)(K − 2)Ntd(Ntd+1)
2

Nrd
)

+K(K − 2)NtNrd
2

Update 2K(KNtd− d)Ntd+ (KNtd)
2

IIA [3] All computation K((2NrNtd+ (N2
r +N2

t )d)(K − 1)

+LQR(Ntd(Nt − d+ 1) +Nrd(Nr − d+ 1) + 2d3−3d2+d
3

))
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Fig. 1. Interference leakage of CGIA for several mobile speeds: (a) K = 4, Nt = 3, Nr = 2, d = 1 (N1 = 30, N2 = 1) and

(b) K = 3, Nt = Nr = 4, d = 2, (N1 = 100, N2 = 1)
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Fig. 2. Computational complexity example:K = 4, Nt = 3, Nr = 2, d = 1 (N1 = 30, N2 = 1)
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Fig. 3. Sum rate performance: CGIA versus the IIA algorithm in [10]: (a) K = 3, Nt = Nr = 2, d = 1 (N1 = 6, N2 = 1)

andK = 4, Nt = 3, Nr = 2, d = 1 (N1 = 30, N2 = 1) and (b)K = 3, Nt = Nr = 4, d = 2 (N1 = 100, N2 = 1)
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