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ABSTRACT

Based on a linear formulation to interference alignment, an adaptive algo-
rithm for interference-aligning beam tracking in time-varying MIMO inter-
ference channels is proposed. It is shown that obtaining the interference-
aligning beam vector is equivalent to minimizing a certain Rayleigh quo-
tient, and the conjugate gradient approach is adopted to construct an adap-
tive algorithm. The convergence and stability of the proposed algorithm
are established in static channel case, and numerical results show that the
proposed algorithm performs well compared with other existing methods
with much less complexity.

Index Terms- Interference alignment, adaptive algorithm, conjugate
gradient, least squares

1. INTRODUCTION

Interference alignment (IA) achieves the maximum degree of free-
dom (DoF) in multiuser interference channels [1], and is an attrac-
tive solution to handle interference properly in future wireless net-
works. Since its introduction much research has been performed
on the achievability issue from information-theoretical perspec-
tive, e.g., [1,2]. In addition to this effort, there has also been a
line of research on the invention of efficient beam design algo-
rithms [3—6] from signal processing perspective and such invention
is important to realize the potential of IA in practice. In particular,
Yu et al. proposed an efficient beam tracking algorithm for IA in
time-varying multi-input multi-output (MIMO) interference chan-
nels [6] based on their previous work [5] of least squares approach
to IA. Their method of beam tracking is based on the matrix per-
turbation approach. That is, the beam solution at the next time is
an additive update of the current time and the difference is derived
from the channel perturbation based on the eigenvector perturba-
tion theory. Even if their proposed method is computationally ef-
fective, it is not a purely adaptive algorithm, and requires a full
eigendecomposition periodically to provide a reference beam vec-
tor to which perturbation term is added at each time step while
tracking. In this paper, we propose a purely adaptive algorithm
for the beam design for [A which works in both static and slowly-
varying MIMO interference channels for the first time to the best
of our knowledge. Our approach to an adaptive algorithm is also
based on our previous work [5] of least squares approach to 1A, but
we here use the congugate gradient descent [7] to update the beam
vector rather than try to obtain the next beam vector by comput-
ing the perturbed eigenvector. The convergence of the proposed
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adaptive algorithm is established in the static channel, and its per-
formance is evaluated numerically and compared with other exist-
ing methods. It is shown that the proposed algorithm works well
up to reasonable mobile speed and yields almost the same perfor-
mance as the previous algorithms with much less computational
complexity. (Throughput this paper, we use the same notation as
in [5].)
2. SYSTEM MODEL AND BACKGROUND

We consider a K-user M x N MIMO interference channel in
which K transmitter-receiver pairs exist and transmitters and re-
ceivers have N and M antennas (N > M), respectively. Assum-
ing fully connected interference structure, the received signal at
time n at receiver k is given by

K
vl = H [ Vilnlselnl + S Hy[n]Vifnlsy[n] + ny o],
1=1, l#k
(1)

where Hy;[n] is the M x N MIMO channel matrix at time n
from transmitter [ to receiver k, V;[n] and s;[n] are the N x d;
beamforming matrix and d; x 1 signal vector at transmitter [, re-
spectively. ng[n] ~ CN(0,0°I) is a zero-mean complex Gaus-
sian noise vector. We assume d = d; = --- = dg, and further
assume that the channel information is known to the transmitters
and receivers.

2.1. Background: LS approach to interference alignment [5]
In this subsection, we briefly introduce the previous work relevant
to our new beam design in the next section. It was shown in [5]
that the necessary and sufficient IA condition could be expressed
by a system of linear equations with dummy variables, given by

H[n]v[n] =0, (2)
where H is defined as (3), and

v[n] £ [ee(Vi[n))T, vee(Van))T, -, vec(Vk[n)T]". (4)
The key advantage of this formulation is that the dummy variables
{Ai[n]} inside H[n] are given in closed-form by

{Hy Vi) Hia [ Va[n]} T, 1=3, - K, ©)
{(Hy [0V [n]) Hpy [n] Vi3, ki l=2,--- K, k#1,

All["]
Akl[n]

when v[n] is given. The existence of solution v[n] and {A;[n]}
to (2) depends on the size K(K_;)M2 x E2N of H[n]. There are
three distinct cases under the linear formulation with dummy vari-
ables. First, when H[n] is strictly fat, as in an example of K = 3,
M = 2, N = 3 and d = 1, there exists a non-trivial solution re-
gardless of the choice of { Ay;[n]} given by a null vector of H[n].
When ﬁ[n] is tall (including square), on the other hand, the case is
further divided into two subcases depending on the rank of H[n).
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o 15 ® Hyg[n] —Ajg[n] ® Hygln]
0 Iy ® Hypln] 0
0 I, ® Hyg[n 0
I; ® Hog[n] o —Agz[n] ® Hagln]
I; ® Haq[n] 0 0
H[n] £ : : :
I ® Hyq[n] 0 0
Ig @ Hpyln] —Agaln] ® Hyeoln] 0
14 ® Hpe[n) 0

The first subcase is that I:I[n] is rank-deficient with properly cho-
sen {Ay;[n]} as in an example of K = 3and M = N = 2d. In
the second subcase, H[n] has full-column rank for any choice of
{Ai[n]} which corresponds to the case that the perfect IA is in-
feasible. In such a case, an approximate solution can be found by
minimizing the interference misalignment | |H[n]v[n]||. Although
the algorithm based on this linear formulation (2) of IA was pro-
posed, the equivalence of this linear formulation with dummy vari-
able to the bilinear formulation in [3] and the existence of solution
d > 2 were not established in [5]. Here, we provide a new result
on this aspect in the feasible case of K = 3and M = N = 2d. (It
was proved in [1] that the perfect [A was not feasible for K > 4
in M x M MIMO channels.)

Theorem 1 _/In the feasible case of K = 3 and M = N = 2d,
the matrix H[n| is rank-deficient by nullity d with a proper set of
{Ari[n]} almost surely for randomly realized {Hy[n]} from a
continuous distribution.

Proof: Please see appendix.

Theorem 1 provides a basis that the interference-aligning beam
vector can be found by solving (2) and (5) for any d = M /2. The
solution is easily obtained by solving

v[n] = argmin |[H[n]v[n]||* = arg min v [n]R[n]v[n] (6)

[Iv[n]l|=1 [Iv[n]l|=1

and (5) iteratively with an initialization, where R[n]
It was proved and shown in [5] that this iterative algorithm con-
verges and this algorithm converges much faster than the previ-
ous algorithm based on the bilinear formulation. In the feasible
case, indeed H[n] at the i-th iteration becomes rank-deficient
by order d as the iteration number increases. It is seen in case of
d > 2 that the subvectors (of one null vector v[n]) corresponding
to multiple streams of one user are identical. However, there are
d linearly independent null vectors and thus d linearly indepen-
dent beam vectors per user are achieved by the proposed method.
Note that the solution to (6) is given by the eigenvector of R[n]
corresponding to the smallest eigenvalue, and this fact provided a
basis for an efficient beam tracking algorithm based on the eigen-
vector perturbation theory in [6]. That is, as channel varies over
time, R[n + p] = H [n + pJH[n 4 p] = R[n] + Gn[n + |
(p > 1) and the extreme eigenvector of R[n + p| can be obtained
as a perturbed extreme eigenvector of R[n] when the perturba-
tion term G, [n + p] is small. Here, one full eigendecomposition
and correct dummy variables are required for R[n] and then for
p=1,2,---, D only additive update based on G, [n + p] is per-
formed. (This process is repeated with period D + 1 over time.)
This tracking method reduces computational complexity signifi-
cantly and yields a good performance when the tracking depth D
is chosen well [6].
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3. ADAPTIVE BEAM TRACKING FOR IA
In this section, we present a new purely adaptive algorithm for
interference-aligning beam vector design considering d = 1. Note
that finding the minimum eigenvalue and corresponding eigenvec-
tor of the Hermitian matrix R[n] in (6) is equivalent to obtaining
the minimum value of the Rayleigh quotient

R[nvln] > /|[v[a]l[®, ()

where < -,- > denotes the inner product between two vectors.
Thus, our beam solution can also be obtained using descent meth-
ods applied to minimize the Rayleigh quotient (7). Among various
descent methods, we adopt the conjugate gradient (CG) approach
which shows fast convergence and does not require matrix inver-
sion as the Netwon descent [7]. In combination with the dummy
variable update (5), the CG provides a very effective adaptive algo-
rithm for interference alignment in static and time-varying chan-
nels, described below.

R(R[n], v[n]) £< vin],

Algorithm 1: The Conjugate Gradient algorithm for Interfer-
ence Alignment (CGIA)
{Initialization
e Set (A = I) and set initial v[0].
forn=1,2,---
e Construct H[n] with {Ax;} and {Hy[n]}
e Update v[n] by running the CG subroutine below:
v[n] = CG subroutine(v[n — 1], H[n])
e Obtain {V;[n]} by reshaping and properly normalizing v[n].
e ifmod(n, N1) =0
) — Update {A; } using (5).
v' = CG subroutine(v,H) [7]
{ Initialization
e Setx(0) =v,b(0) =0and R = H'H

* A(0) =< x(0), Rx(0) > /||x(0)|?
fork=0,1,--- ,No — 1
o ifk=0
o r(0) = p(0) = [M(0)x(0) — Rx(0)]/|[x(0)[|?
e (k) = [-B ++/B? —4CD]/(2D), where
o Pa(k) =< p(k), Rx(k) > /|[x(k)[]*
o Py(k) <P(k’) Rp(k) > /|[x(k)|]?
o Pe(k) =< p(k),x(k) > /|[x(k)||*
© (k) =< P( ), p(k) > /|Ix(K)||?
°© Py (k) Pe(k) = Pa(k)Pa(k)
o Py (k) = A(k) Pa(k)



o C = Py(k) — Mk)P:(k)

x(k 4+ 1) = x(k) + t(k)p(k).

Ak +1) =< x(k+1),Rx(k + 1) > /||x(k + 1)[|?
r(k+1) = Ak + Dx(k+1) — Rx(k + 1)]/||x(k + 1)||?
b(k+1)=— <r(k+1),Rp(k) >/ < p(k),Rp(k) >
p(k+1) =r(k+1)+b(k+ 1)p(k)

i,/ = x(N2).

In the above CG subroutine, r is the residual, p is the direction
vector for update and x is the desired vector. Depending on the
normalization variation, several different computations of b(k) are
available for CG, but simulations showed almost the same perfor-
mance for the variations. In Algorithm 1, we further have freedom
to design (N1, N2), where Ny is the period of the dummy variable
update and N3 is the number of CG updates per time step. Since
the CG finds the extreme eigenvector with size(R[n]) updates,
(N1 = 1,Ny = size(R[n])) and (N1 = size(R[n]), N2 = 1)
result in the same solution which is the extreme eigenvector of
R|[n] when the channel is static, and the CGIA with these com-
binations of (N1, N2) is equivalent to the iterative least squares
algorithm proposed in [5]." For time-varying channels, (N1, N2)
can be optimized to yield the best performance.

4. ANALYSIS

In this section, we provide several properties of the proposed CGIA
algorithm. First we establish the convergence of CGIA.

Theorem 2 The CGIA converges for any initialization and (N1, N2)

Jor static channels, i.e., Hy[0] = --- = Hy[n] for all n. Thus,
the algorithm is stable for static channels.

Proof: The proof is by showing that the Rayleigh quotient R de-
creases monotonically. Given Ay, it is known that the CG update
does not increase the Rayleigh quotient [8]. Also, given v, it was
proved in [5] that the dummy variable update (5) does not increase
the Rayleigh quotient since (5) itself is the least squares solution
to minimize the Rayleigh quotient as a function of Ay, i.e.,

R(I:I(Hkl, Akl), V,) 2 R(I:I(Hkl, A;d), V,)7

where A}, is the updated A, based on the new beam v’ from the
CG step. Combining the two facts, the Rayleigh quotient is mono-
tone decreasing for CGIA regardless of the value of (N1, N2), but
the Rayleigh quotient is lower bounded by zero. Thus, CGIA con-
verges by the monotone convergence theorem. |

The CGIA algorithm updates the beam vector so that the Ray-
leigh quotient (7) or equivalently the overall interference misalign-
ment |[H[n]v[n]|| under the norm constraint is minimized. As the
Rayleigh quotient (7) decreases, we expect that the interference
leakage also decreases. This can be proved in the feasible case
of K = 3and 2d = M = N = 2. The interference leakage
~i at receiver k is defined in [3] as Vi o SR LYY

»2d on )
i (T'y,) are the eigenvalues of the interference covariance matrix at

receiver k, T's, 2 Z#k H,, V,VIHE and Air1(Trk) < Xi(Tw)
for all . Thus, in the case of 2d = M = N = 2 we have
o = —e@o
AT +a2 L)
is given by the minimum eigenvalue R satisfying

, where

On the other hand, the Rayleigh quotient

Hv = Rv. ®)

'In [7], the numerical results show that the algorithm does not find the
exact solution but almost same solution in size(R[n]) steps.
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Required number of complex multiplications

Fig. 1. Complexity (K =3, 2d =M = N = 2)

Regarding the relationship between v, and R we have the follow-
ing result.

Theorem 3 Suppose that the convergent beam solution by CGIA
has a norm strictly larger than zero for each user. Then in case of
K =3and 2d = M = N = 2 there exists a constant c such that

W < c|RP?, )

where R is the Rayleigh quotient and . is the corresponding in-
terference leakage.

The proof is by direct computation of the eigenvalues A1 (T'y),
A2(T',) and ~;, and representing 7% in terms of R exploiting the
structure of H in (3) and (8).

Now we compare the computational complexity of beam de-
sign algorithms for interference alignment in time-varying chan-
nels. We use the number of complex multiplication as the cri-
terion. Fig. 1 shows the complexity of various algorithms. We
considered the iterative method in [3] and its two modifications
to time-varying scenario, the iterative least squares in [5] and the
perturbation approach in [6]. For CGIA we used N1 = Ny = 1.
For all other methods than CGIA, at n=1 the complexity shows
the complexity for static channel. The number of iterations at n=1
for two non-recursive methods [3] and [5] was set to 100 and 50,
respectively, so that further iterations do not enhance the perfor-
mance for each. For the non-recursive curves, the same iteration
is repeated at each time step with new channel value and thus the
complexity increases with the largest slopes as time goes. How-
ever, the clever algorithms such as the perturbation algorithm [6]
and the modifications of [3] drastically reduces the complexity.
(In the modifications of [3] the previous beam vector was used
as the initial value for iterations and one or two iterations were
only applied. It was observed that at least two iterations were re-
quired to yield similar performance. (The curve with one itera-
tion was shown to provide the computational performance limit of
the method.) Although the perturbation method in [6] has smaller
slope than CGIA, it requires a jump at every mD, m = 1,2, ---.
Thus, the relative complexity between the two algorithms depends
on the value of D. (The initial steps for CGIA to converge is neg-
ligible as time goes.)

5. NUMERICAL RESULTS
Here, we provide some numerical results of the performance of
CGIA. We considered K = 3 and 2d = M = N = 2 MIMO in-
terference channel. We generated a 1st-order Gauss-Markov chan-
nel process for each channel tap with the carrier frequency of |GHz
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and symbol duration of 66.7 i sec corresponding to the symbol du-
ration of 3GPP long-term evolution (LTE). Fig. 2 shows the track-
ing performance of the CGIA for the time-varying channel. As
expected the algorithm converges initially and there exists steady-
state floor of the Rayleigh quotient and interference leakage due
to the time-variations of the channel with larger floor for higher
mobile speed. It is also seen that the Rayleigh quotient and in-
terference leakage behaves in the same manner as predicted by
Theorem 3. Finally, Fig. 3 shows the sum rate performance of
CGIA with N; = 6 and N> = 1, the perturbation method [6] with
D = 100 and the original iterative method® in [3] as the perfor-
mance reference. As expected, there is tracking loss at high SNR
as the mobile speed increases. (See the curves corresponding to
50 km/h.) It is seen that the CGIA performs better than the per-
turbation method [6] at 50 km/h whereas the perturbation method
performs better at the lower speed of 10 km/h. This is because
D = 100 is small enough for 10 km/h but it is large at 50 km/h.
Thus, from the complexity in Fig. 1 we see that the perturbation
method has advantage at low mobile speed whereas the CGIA has
at high mobile speed.

6. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the CGIA algorithm for purely
adaptive beam tracking for interference alignment in time-varying
MIMO interference channels. We have established the conver-

2 At each time step, 100 iterations were performed to yield almost per-
fect interference-aligning beam vectors for the channel at each time step.
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gence of the CGIA at static channels and have evaluated its per-
formance in time-varying channel case numerically. The CGIA
shows comparable performance with significant complexity reduc-
tion and it can be used for practical systems with real time-varying
channels to realize interference alignment when channel state in-
formation is available at transmitters. Future work includes the
extension to the case of d > 2 and further analysis of steady-state
leakage as a function of mobile speed.
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Appendix: Proof of Theorem 1 It suffices to show that there exist a full column-
rank matrix V (with size of K M x d) and {Ay; } such that HV = 0. (rank(V)
cannot be greater than d by the known feasibility result [1].) By partitioning V into
VI, VZ, VT, the IA condition given by IV = 0 can be rewritten as

Is ® Hi2Va — Aj3 ® Hi3Vy = 0, (10)
Is ® H21 V) — A2z ® Haz3Vy = 0, (11)
I ®H31VE — Az @ HzaV, = 0. (12)

For randomly realized channel { Hy,; }, the matrices are invertible almost surcly With
(11) and (12), (10) is rewritten by (A23A13 Afl) ® (H21 H%H13 H12H‘32
H31)Vy = V; since (A ® B)_1 A~' @ B~ for invertible matrices A
and B, and (A ® B)(C ® D) = AC ® BD. Defining A’ 2 Ao AL AL
and F £ H; 'HozH ' Hi2H, Hai, we obtain

(A’ ®F)V; = VL (13)

Note that (13) is an invariant subspace equation. Assume that the sets of eigen-

“Aarals {ar, - s aql,
, far}, respectively. (Since the set of com-

values and eigenvectors of A’ and F are {Aar1s
and {AF,I» L] ,)\iju}, {fl, e
plex M x M matrices that are not diagonalizable has measure zero in the space
of CM XM 'the randomly generated matrix F is diagonalizable almost surely and its
M eigenvectors are linearly independent.) Suppose now that A’ have the d eigen-

values in the set of inverse eigenvalues of F, ie, A4/ ,, = %,
) F,m(m)

{m(1),--+ ,7(d)} C {1,--+, M} for some permutation 7(-). Then, A’ ® F
have a unit eigenvalue with geometric multiplicity d and the corresponding eigen-

where

vectors are a1 @ fr (1), , a4 ® fr(q) which are also linearly independent by
the linear independence of f (,,,) and the property of the Kronecker product since
a,;,, m = 1,---,d have at least one non-zero element. The matrix composed
of these eigenvectors satisfies (13). The existence of such an A’ is straightfor-
ward using singular value decomposition (SVD) and there also exist A ; such that
A = A23A1731 A;zl, eg,A13 = Azo = Iand Axz = A’. Since a submatrix

V1 of V has rank d, V has also rank d. |



