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Abstract—The performance of energy detection under mul-
tipath fading is analyzed and compared with locally optimal
detection using Pitman’s asymptotic relative efficiency. Under
the -tap finite impulse response channel model with zero-mean
independent and identically distributed tap coefficients, it is shown
that the average performance loss of energy detection is no greater
than 50% in sample size for the same performance compared with
locally optimal detection exploiting signal correlation. Also, an
algorithm exploiting signal correlation and improving the detec-
tion performance is proposed based on the estimation of signal
correlation. Numerical results show that the proposed algorithm
almost achieves the performance of locally optimal detection.

Index Terms—Asymptotic relative efficiency, cognitive radios,
energy detecton, multipath channel.

I. INTRODUCTION

E NERGY detection has widely been used to detect un-
known signals in noise. It has gained renewed interest re-

cently in cognitive radio communications [1]–[3]. In cognitive
radio networks, secondary users opportunistically access the
spectrum allocated to a primary user based on channel sensing.
Typically, secondary users sense the channel to detect the trans-
mission of the primary user for further access. Since the signa-
ture of primary user’s signal is not known in most cases, simple
energy detection is a reasonable choice for channel sensing in
cognitive radio communications [2], [3]. The performance limit
of energy detection was considered under noise variance uncer-
tainty in [2]. In this letter, we focus on the performance of en-
ergy detection under multipath fading in the context of cognitive
radio, and investigate the performance loss of energy detection
caused by neglecting the signal correlation induced by multipath
fading1. Since the exact error probability is not known in gen-
eral correlated cases, we approach the problem using Pitman’s
asymptotic relative efficiency (ARE), and show that under the

-tap finite impulse response (FIR) channel model with zero-
mean independent and identically distributed (i.i.d.) tap coeffi-
cients the average performance loss by energy detection is no
greater than 1/2 compared with locally optimal detection ex-
ploiting the signal correlation. We also propose an algorithm to
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improve the detection performance based on the estimation of
signal correlation.

The rest of the paper is organized as follows. System model
and optimal sensing scheme is provided in Section II. The per-
formance loss of energy detection is analyzed in Section III, and
an algorithm exploiting signal correlation is proposed in Sec-
tion IV, followed by a conclusion in Section V.

II. DATA MODEL AND OPTIMAL SENSING

We assume that the signal of the primary user is generated ac-
cording to general digital modulation. Specifically, a sequence

of transmission symbols is filtered by a pulse shaping filter
, and transmitted2. We assume that the transmitted signal

propagates through FIR channels to secondary users. At the re-
ceiver of a secondary user, the received signal is corrupted by
additive white Gaussian noise (AWGN), filtered by , and
sampled at the symbol rate of the primary user signal which is
assumed to be known to the secondary user. Here, denotes
the complex conjugate. Thus, the discrete-time received signal

at the secondary user is given, as shown in Fig. 1, by

(1)

where the alternative hypothesis represents the case that the
primary user transmits and the null hypothesis represents the
case of noise only. Here, is i.i.d. proper complex zero-mean
Gaussian noise with a known variance , which is assumed to
be independent of the signal part , and the signal part is given
by

(2)

where are the
normalized FIR channel response between the primary user and
the secondary user, and is the unknown average received en-
ergy parameter.3 We assume that is drawn i.i.d. from a dis-
tribution with zero mean and does not vary over one sensing
period. To simplify the analysis, we further assume that the pri-
mary symbol sequence is an i.i.d. zero-mean complex
Gaussian process with unit variance, which is independent of
the channel coefficients. Note that the received signal process

is wide-sense stationary but not i.i.d. because of the memory
effect of the FIR channel although is assumed to be i.i.d.,
which is valid for most coded transmissions. The autocorre-
lation function of conditioned on the channel realization

is given by

2The upconversion step is not important since we can adopt the baseband
equivalent model with the knowledge of the primary carrier frequency.

3Let � � ������ � � � � ����� be the true propagation channel. Then, � �
�� � and � � � � �� � .
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Fig. 1. Discrete-time system model.

otherwise.
(3)

The SNR under the alternative hypothesis in (1)
is given by since

.

A. Preliminary: Locally Optimal Sensing

First, assume that the channel realization and the average
signal energy are known to the secondary user. In this case, the
optimal detection is given under the Gaussian signal assumption
by a likelihood ratio detector [5, pp. 72–76]

(4)

where and is an
signal covariance matrix which is Hermitian and Toeplitz
with as the first row. Here, the
detection threshold is determined to satisfy a size constraint,

, where is a desired false alarm
probability.

In cognitive radio context, however, it is difficult for the sec-
ondary user to acquire the channel information and av-
erage signal energy . When the signal power is unknown as in
this case, the sensing problem can be formulated as a composite
hypothesis test in which the null and alternative hypotheses are
given by

(5)

respectively, for the same signal model (1). For the test of (5)
with signal model (1, 2), no uniformly most powerful (UMP)
detector exists [5, p. 36]. Instead, the detection (5) can be fo-
cused on a local setup in which the alternative hypothesis arbi-
trarily close to the null hypothesis is considered with large
sample size, and the locally most powerful (LMP) detection cri-
terion is used. In this local setup, the criterion mainly focuses on
the low SNR range since the parameter represents the average
signal energy, and this is especially suitable to cognitive radio
communications in which the strength of primary user’s signal
is very weak. For the local setup, the locally optimal or LMP de-
tector for (1, 5) is given by the score test [5, p. 80,], [6, p. 220]

(6)

where the threshold is determined to satisfy the size con-
straint as in (4). Due to the banded structure of ,
can easily be computed by exploiting this structure and is given
by

(7)

where are the true autocorrelation
parameters and is the sample autocorrelation given by

(8)

Note that the computational complexity of the LMP detection
is , which has the same order as the simple energy
detector.

III. SUBOPTIMAL ENERGY DETECTION AND
ITS PERFORMANCE LIMIT

For the LMP detection in the previous section, the knowledge
of signal correlation is required. Since the autocorrelation
coefficient is a function of channel coefficients, this requires
the knowledge of channels, which is difficult to obtain in cogni-
tive radio communications. To circumvent this difficulty, simple
energy detection is commonly adopted and given by

(9)

Note that and the LMP detection reduces to the en-
ergy detection if the signal process is i.i.d. with flat fading. In
case of multipath fading, however, delay spread induces signal
correlation and the energy detection yields performance degra-
dation. Since the exact error probability of the LMP detection
and energy detection under signal correlation is not available,
we adopt Pitman’s ARE to evaluate the performance degrada-
tion of the energy detection compared with the LMP detection
[5, p. 91]. The ARE of the suboptimal energy detec-
tion to the LMP detection is defined as the ratio of the number

of samples for the energy detection to the number of
samples for the LMP detection to achieve the same miss proba-
bility under the same false alarm probability as , i.e.,
[5, p. 91], [6, p. 195], [7]

(10)

Thus, the ARE is a good measure for the relative performance
between the two detectors. For example, means
that the energy detection requires twice more samples than the
LMP detection for the same performance. Under some regu-
larity conditions the ARE is given by the asymptotic ratio of
generalized SNR [8]

(11)

where
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(12)

and for detector

(13)

Here, represents expectation under ,
denotes variance under , and are given

in (6) and (9). The ARE of the energy detection to the LMP
detection is obtained using the Toeplitz distribution theorem
[9] and given by [8]

(14)

where is the spectrum of the signal process , given by

(15)

Note from (14) that by the Cauchy-Schwarz in-
equality unless the signal spectrum is flat, i.e., .
Thus, the energy detection always yields worse performance
than the LMP detection in multipath fading channels. By direct
computation we have

(16)

(17)

and the ARE is given by4

(18)

Note that the ARE is a function of , which is a function
of the channel coefficients in turn through (3). [This depen-
dency is explicitly shown in the left-handed side of (18).] Since

in (18) depends on the channel realization ,
it is random. To remove this instantaneous channel dependency
and derive the loss factor depending on channel statistics only,
we define the average ARE as

(19)

where the expectation is taken over the channel distribution.
We shall now provide a lower bound on the average ARE of

the energy detection to the LMP detection based on (18).

4Note that for the calculation of (13) only the first and second order properties
of distribution is required. Thus, (18) is valid for any second-order stationary
signals and the Gaussian signal assumption is not required. However, the test
(6) is LMP when the signal is Gaussian. For general stationary signals the test
(6) is the maximum-deflection detector.

Lemma 1: Let be drawn i.i.d. from a zero-
mean distribution with variance , i.e., ,

, and . Then

(20)

for all , and is a monotone increasing function of
and converges to 1/2 as increases without bound.

Proof: Please see [4].
Theorem 1: For any two-tap channel with zero-mean and

independent tap coefficients, , and thus
for .

Proof: Note that and

The last inequality holds since
.

Theorem 2: Under the same conditions as in Lemma 1, for
sufficiently large , the average ARE is lower-bounded by 1/2,
i.e.,

(21)

and converges to 1/2 with rate of as increases
unboundedly.

Proof: Since and , we have
by the strong law of large numbers (SLLN) for sufficiently large

almost surely. Thus, we have for sufficiently large

(22)

almost surely for any . Then we get (23), shown at the
bottom of the next page. Here, (a) is by Jensen’s inequality, (b)
is by applying (22), (c) is by the definition of in Lemma
1, and (d) is because is arbitrary and by Lemma
1. The second claim is by substituting
from Lemma 1 in (23).

Theorems 1 and 2 provide a fundamental limit for the average
loss of the energy detection compared with the LMP detection
caused by ignoring the signal correlation in multipath fading
channels for two tap channel and large , i.e., very strong corre-
lation, respectively. Since the average ARE is greater than 1/2,
the number of samples for energy detection is no larger than
twice of the LMP detection for the same performance in mul-
tipath fading channels even with large number of taps. Fig. 2
shows the average ARE of the energy detection to the LMP de-
tection with respect to the number of taps in multipath fading

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 14, 2009 at 07:58 from IEEE Xplore.  Restrictions apply. 



952 IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 11, NOVEMBER 2009

Fig. 2. � for �-tap FIR channel with equal tap power.

channels with Rayleigh distribution and circularly uniform dis-
tribution for channel coefficients. Although it is not proved for
intermediate values of , it is seen in the figure that the average
ARE is larger than 1/2 for intermediate values too.

IV. AN ALGORITHM EXPLOITING SIGNAL CORRELATION

As shown in Fig. 2, the performance of energy detection can
be improved especially for large by exploiting the signal cor-
relation. Here, we propose a two-step algorithm exploiting the
signal correlation. Assuming that the channel does not vary for
the sensing period, the secondary user first estimates the corre-
lation of the observation signal to yield a signal correlation
estimate , where is a limiting oper-
ation to yield a positive semi-definite signal covariance matrix.
Next, we apply the LMP test based on the estimated signal cor-
relation , i.e.,

(24)

Simulation was performed to evaluate the performance of the
proposed algorithm under equal power Rayleigh fading FIR
channels with , and . Fig. 3
shows the miss detection probability for the energy detection,
LMP detection and the proposed method for which a maximum
likelihood estimation is used for covariance estimation. It is
observed that the proposed algorithm improves the perfor-
mance over the energy detection and yields almost the same
performance as the LMP detection.

Fig. 3. Miss detection probabilities with respect to sample size.

V. CONCLUSION AND DISCUSSION

We have considered the energy detection of signals under
multipath fading. We have investigated the loss of energy de-
tection compared with the LMP detection caused by ignoring
signal correlation using Pitman’s ARE, and have shown that
under the -tap FIR channel with i.i.d. zero-mean tap coeffi-
cients with equal power, the average performance loss of energy
detection is no greater than 50% in sample size for the same per-
formance compared with the LMP detection. We have also pro-
posed an algorithm that exploits the signal correlation, and have
evaluated its performance numerically. The proposed algorithm
yields almost the same performance as the LMP detection with
the exact knowledge of signal correlation.
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