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ABSTRACT

In this paper, the loss of energy detection compared with op-
timal sensing caused by neglecting signal correlation due to
multipath fading is considered. The loss factor or relative per-
formance of energy detection compared with optimal sensing is
analyzed using Pitman’s asymptotic relative efficiency (ARE)
which is defined as the ratio of the required number of samples
of one detector to that of the other to yield the same detection
performance in large sample scheme. Under the assumption
of L-tap finite impulse response (FIR) channel with zero-mean
independent and identically distributed (i.i.d.) tap coefficients,
it is shown that the loss factor of the energy detection relative to
optimal sensing is no larger than 1/2 in large delay spread case
(i.e., strong correlation); under the same signal power condi-
tion the required number of samples for energy detection ne-
glecting the signal correlation is no more than twice of that
required for optimal sensing exploiting the signal correlation
fully.

Index Terms – Cognitive radio, multipath fading, energy de-
tection, optimal sensing, asymptotic relative efficiency.

1. INTRODUCTION

With the congestion of radio spectrum cognitive radio communi-
cation has become an attractive solution [1]. In cognitive radio
communications secondary users sense the primary user’s signal in
common radio band to access the channel opportunistically. Since
the signal signature of the primary user is not known typically in
this situation, the energy detection is widely considered and used
for channel sensing [2, 3]. Under Gaussian signal and noise as-
sumption, the energy detection is optimal for i.i.d. random signals.
However, this is not the case in typical wireless channels. Due
to multipath delay spread of wireless channel, the signal to sense
is correlated and the energy detection is not optimal any more in
most cases. In this paper, we analyze the loss of energy detection
caused by neglecting the signal correlation, and provide a funda-
mental bound for the loss factor of energy detection compared with
optimal sensing. Since the exact error performance for the detec-
tion of random signals with correlation is not available [4], we
approach the problem using Pitman’s ARE defined as the ratio of
the required number of samples of one detector to that of the other
to yield the same detection performance in large sample scheme.
Under the assumption of L-tap FIR channel with zero-mean i.i.d.

tap coefficients, e.g., L-tap Rayleigh fading, we show that the loss
factor of the energy detection is no larger than 1/2 in large delay
spread case; the required number of samples for energy detection
neglecting the signal correlation is no larger than twice of that re-
quired for optimal sensing exploiting the signal correlation fully.

2. DATA MODEL AND OPTIMAL SENSING

We consider cognitive radio communications in which secondary
users sense the signal of primary users for the opportunistic use
of wireless channel. We assume that the primary user’s signal is
generated according to the general digital modulation procedure
at the primary transmitter. That is, a symbol sequence s[i] is fil-
tered by a pulse shaping filter p(t), and then the filtered signal is
transmitted through an antenna1. We assume that the transmitted
signal propagates through FIR channels to secondary users, which
is the case in most wireless communications. At the receiver of a
secondary user, the received signal is corrupted by additive white
Gaussian noise (AWGN) and the noisy signal is filtered by p∗(−t)
and sampled at the symbol rate of the primary user signal which is
assumed to be known to secondary users. Then, the discrete-time
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Fig. 1. Discrete-time system model

received signal y[i] at the secondary user is well known, as shown
in Fig. 1, and is given by

H0 : y[i] = w[i], i = 1, 2, · · · , n,
H1 : y[i] = θr[i] + w[i], i = 1, 2, · · · , n,

(1)

where the null hypothesis H0 represents the noise only case and
the alternative hypothesis H1 represents the case when the signal
is present. Here, w[i] are i.i.d. proper complex Gaussian noises
drawn from CN (0, σ2) with a known variance σ2, which is inde-
pendent of the signal part r[i], and the signal part given by

r[i] =
L∑

k=1

h[k]s[i− k], (2)

1The upconversion step is not important since we can adopt the base-
band equivalent model.
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where {h[i], i = 1, · · · , L : E{
∑

i
|h[i]|2} = 1} are the (statis-

tically) normalized FIR channel response from the primary user
and the secondary user, and θ is the unknown amplitude param-
eter.2 Here, we assume that the channel coefficient vector h

Δ
=

[h1, · · · , hL]T is a realization of proper zero-mean complex ran-
dom vector satisfying E||h||2 = 1 and does not change over one
sensing interval. To simplify the sensing problem, we further as-
sume that the primary symbol sequence s[i] is an i.i.d. zero-mean
(complex) Gaussian process with variance E{|s[i]|2} = 1, inde-
pendent of the channel coefficients. Note that the received sig-
nal process r[i] is wide-sense stationary but not i.i.d. because of
the memory effect of the FIR channel even though the symbol se-
quence s[i] at the primary transmitter is assumed to be i.i.d., which
is valid for most coded transmissions. The autocorrelation function
of r[i] conditioned on the realization h is given by
γm = E{r[i]r∗[i−m]}, (3)

=

{ ∑L
k=m+1 h[k]h∗[k −m], −L + 1 ≤ m ≤ L− 1,

0 o.w.,

where (·)∗ represents the complex conjugate and γ−m = γ∗

m. The
signal-to-noise ratio (SNR) under the alternative hypothesis in (1)
is given by

SNR =
θ2

σ2
, (4)

since E{r2[i]} = E{|s[i]|2}E{
∑L

k=1 |h[k]|2} = 1.

2.1. Exploiting signal correlation and locally optimal sensing

Let us first assume that the channel realization {h[i]} is known to
the secondary user. When the signal amplitude θ is also known,
the optimal sensing is given by a likelihood ratio detector given by

Tlrt(yn) = y
H
n Σr(σ

−2
I + θ2

Σr)
−1

yn

≥H1

<H0

τ1, (5)

where yn = [y[1], y[2], · · · , y[n]]T andΣr is given by the n× n
signal covariance matrix

Σr =

⎡
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.

Here, the threshold τ1 is determined to satisfy the size constraint,
i.e., Pr{Tlrt(yn) ≥ τ1} = PF , where PF is the desired false
alarm probability. In the sensing problem under cognitive radio
context, however, it is difficult to know the channel gain h[i] and
the signal amplitude θ without explicit measuring of the signal
part. (Note that we do not even know whether the signal is present
or not.) With the unknown signal power, the sensing problem can
be formulated as a composite hypothesis detection problem, and
the null and alternative distributions are given by{

H0 : θ = 0,
H1 : θ > 0,

(6)

2Let ht be the true propagation channel. Then, θ =
√

E||ht||2 and
h = ht/

√
E||ht||2.

respectively. For the test of the hypothesis (6), no uniformly most
powerful (UMP) detector exists [4]. Thus, the detection of a sig-
nal with unknown amplitude as in (6) is focused on the alternative
hypothesis which is close to the null hypothesis θ = 0 where the
distributions of the null and alternative hypotheses are mutually
contiguous. That is, the criterion focuses on the low signal-to-
noise (SNR) range, especially, in the large sample size since the
parameter θ represents the amplitude of the signal. This is es-
pecially suitable to cognitive radio communications in which the
strength of the primary user’s signal to sense is very weak. The
locally most powerful (LMP) or locally optimal detection for (1,
6) focusing on the low SNR is given by the score test [4, 5]

Tlo(yn) =
1

n
y

H
n Σryn

≥H1

<H0

τ2, (7)

where the threshold τ2 is determined to satisfy the size constraint.
Since Σr is a banded matrix with bandwidth L, the computation
of Tlo(yn) can be easily done exploiting this sparsity, and is given
by

Tlo(yn) =
1

n

n∑
i=1

n∑
j=1

y∗[i]y[j]γi−j ,

= γ0γ̂0 + 2

L−1∑
k=1

Re{γkγ̂k}, (8)

where {γm,−L + 1 ≤ m ≤ L + 1} are the true autocorrelation
parameters, and γ̂m is the sample autocorrelation given by

γ̂k =
1

n

n−k∑
i=1

y∗[i]y[i + k], k = 0, 1, · · · , L− 1. (9)

Note that the computational complexity of the optimal sensing is
O(Ln), where the channel lengthL is fixed, and this complexity is
in the same orderO(n) of the simple energy detector in the below.

3. SUBOPTIMAL ENERGY DETECTION AND ITS
PERFORMANCE LIMIT

Note from (7 - 8) that the optimal LMP sensing requires the knowl-
edge of the signal correlation {γm}, which in turn requires the
knowledge of the FIR channel coefficients. (See (3).) The knowl-
edge of the channel between the primary user and the secondary
user is not available in most cognitive radio situations. Thus, the
simple energy detector is widely used by ignoring the signal cor-
relation, and is given by

Ten(yn) =
1

n
γ0y

H
n yn =

1

n
γ0

n∑
i=1

|y[i]|2,

= γ0γ̂0. (10)

It is seen by comparing (10) with (7) that the simple energy de-
tector is optimal if Σr = γ0I, i.e., the signal process r[i] is i.i.d.
However, this is not the case with multipath fading since multipath
delay spread results in signal correlation. Since the exact error
probability of the locally optimal detection and the energy detec-
tion under signal correlation is not available [4], we evaluate the
performance degradation of the simple energy detection compared
with the optimal LMP sensing using the Pitman ARE. The ARE
of the suboptimal energy detector to the optimal LMP sensing is

2538



defined as the ratio of the number (nen) of samples for the energy
detector to that (nlo) of the optimal LMP detector to achieve the
same miss probability under the same size constraint as nen →∞,
i.e., [4, 5]

AREen,lo
Δ
= lim

nen→∞

nlo

nen

. (11)

Thus, the ARE can serve as a loss factor of the energy detector
compared with the optimal LMP sensing. Under some regularity
conditions the ARE is given by the asymptotic ratio of the gener-
alized SNR, defined as [7]

ARE =
S(Ten,∞)

S(Tlo,∞)
, (12)

where

S(Ten,∞) = lim
n→∞

S(Ten(yn))

n
, (13)

S(Tlo,∞) = lim
n→∞

S(Tlo(yn))

n
, (14)

and

S(Tx(yn))
Δ
=

(E1{Tx(yn)} − E0{Tx(yn)})2

Var0{Tx(yn)}
. (15)

Here, Ej{·} represents expectation under Hj (j = 0, 1), Var0{·}
denotes variance under H0, and Tx(yn) are given in (7) and (10).
It is shown using the Toeplitz distribution theorem that the ARE of
the energy detector to the optimal LMP sensing is given by [7]

AREen,lo =

(
1
2π

∫ 2π

0
fs(ω)dω

)2

1
2π

∫ 2π

0
f2

s (ω)dω
, (16)

where fs(ω) is the spectrum of the signal process s[i], given by

fs(ω) = (2π)−1
∞∑

m=−∞

γme−jmω,

= (2π)−1

(
γ0 + 2

L−1∑
m=1

Re{γme−jmω}

)
. (17)

Note from (16) that AREen,lo ≤ 1 by the Cauchy-Schwarz in-
equality unless the signal spectrum is flat. That is, the energy
detector always yields worse performance than the optimal LMP
sensing with multipath fading (or delay spread). By direct compu-
tation we have∫ 2π

0

fs(ω)dω = γ0, (18)

∫ 2π

0

f2
s (ω)dω = (2π)−1

(
γ2
0 + 2

L−1∑
m=1

|γm|
2

)
, (19)

and the ARE is given by

AREen,lo(γ(h)) =
γ2
0

γ2
0 + 2

∑L−1
m=1 |γm|2

. (20)

Note that the ARE is a function of {γm} and in turn a function of
the channel coefficient vector h through (3). (This dependency is
explicitly shown in the left-handed side of (20).)

Note that AREen,lo is dependent on the channel realization
h and thus random. To eliminate this instantaneous channel de-
pendency and derive the loss factor depending only on the channel
statistics, we define the average ARE as

¯ARE
Δ
= Eh{AREen,lo(γ(h))}, (21)

where the expectation is taken over the distribution of the channel.
Now, we examine the impact of multipath fading on the relative
performance of energy detectors to optimal LMP sensing by in-
vestigating the behavior of the average ARE as the channel length
L increases.

Lemma 1 Suppose that the channel coefficients h1, . . . , hL are
i.i.d. with zero mean and variance 1/L. Then, we have

f(L)
Δ
= Eh

{
L−1∑
m=1

|γm|
2

}
=

L(L− 1)

2L2
≤

1

2
(22)

for all L ≥ 1, and f(L) is a monotone increasing function of L
and converges to 1/2 as L tends to infinity.

Proof: By definition we have

γm = E{r[i]r∗[i−m]|h},

=

{ ∑L

k=m+1 h[k]h∗[k −m], −L + 1 ≤ m ≤ L− 1,
0 o.w.,

and thus we have

Eh|γm|
2

= Eh

{
γmγ

∗

m

}
,

= Eh

⎧⎨
⎩

L∑
k=m+1

h[k]h
∗

[k −m]

⎛
⎝ L∑

i=m+1

h[i]h
∗

[i−m]

⎞
⎠∗

⎫⎬
⎭ ,

= Eh

⎧⎨
⎩

L∑
k=m+1

L∑
j=m+1

h[k]h
∗

[k −m]h
∗

[i]h[i−m]

⎫⎬
⎭ ,

=

L∑
k=m+1

L∑
i=m+1

Eh

(
h[k]h

∗

[k −m]h
∗

[i]h[i−m]
)

,

=

L∑
k=m+1

L∑
i=m+1

δki/L
2
,

= (L−m)/L
2
.

Summing all Eh|γm|
2,m = 1, · · · , L− 1, we have

Eh

{
L−1∑
m=1

|γm|
2

}
=

L−1∑
m=1

L−m

L2
=

1

L2

L(L− 1)

2
=

1

2

(
1−

1

L

)
.

Since 1
L
decreases monotonically to zero as L increases unbound-

edly. Therefore, Eh

{∑L−1
m=1 |γm|

2
}
is monotonically increasing

and converges to 1/2 as L increases. �

Theorem 1 Under the same conditions as in Lemma 1, for suffi-
ciently large L, the average ARE is lower-bounded by 1/2, i.e.,

¯ARE ≥ LB(L) ≥
1

2
, (23)

and LB(L) converges to 1/2 with rate of O
(

1
L

)
as L increases

unboundedly.
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Proof: Note that

γ0 =
L∑

i=1

|hi|
2,

where hi, i = 1, · · · , L, are i.i.d. with zero-mean and variance
1/L. By the strong law of large numbers (SLLN), we have for
sufficiently large L

|γ0 − 1| ≤ ε,

almost surely since E{γ0} = 1. Thus, we have for sufficiently
large L

1− ε′ ≤ (1− ε)2 ≤ γ2
0 ≤ (1 + ε)2 ≤ 1 + ε′ (24)

almost surely for any ε′ > 0.

¯ARE = E

{
γ2
0

γ2
0 + 2

∑L−1
m=1 |γm|2

}
,

= E

{
1

1 + 2
∑L−1

m=1 |γm|2/γ2
0

}
,

(a)

≥
1

1 + 2E{
∑L−1

m=1 |γm|2/γ2
0}

,

(b)

≥
1

1 + 2E{
∑L−1

m=1 |γm|2}/(1− ε′)
,

(c)

≥
1

1 + 2f(L)/(1− ε′)
, (25)

(d)

≥
1

2
almost surely.

Here, (a) is by Jenssen’s inequality, (b) is by applying (24), (c)
is by the definition of f(L) in Lemma 1, and (d) is because ε′ is
arbitrary and f(L) ≤ 1/2 by Lemma 1. The second claim is by
substituting f(L) = (1/2)(1− 1/L) from Lemma 1 in (25). �

Theorem 1 provides a fundamental limit for the loss of the energy
detection compared with the optimal LMP sensing caused by ne-
glecting the signal correlation due to multipath fading for large L,
i.e., very strong correlation. The loss cannot be bigger than 50 %
compared with the optimal sensing under the same signal power
condition! For the same detection performance the energy detec-
tion requires no more than twice of the number of samples that is
required for the optimal sensing even in the case of very strong
correlation caused by large delay spread.

Figure 2 shows the average ARE of the energy detection to the
optimal LMP sensing for L-tap equal power Rayleigh fading. As
proven in Theorem 1, the average ARE is lower bounded by 1/2
for large L. It is trivial to see that the average ARE is equal to
one for L = 1, i.e., in flat fading. In the intermediate values of L
it is seen in the figure that the average ARE is monotonically de-
creasing and converges to the lower bound, 1/2, as the channel L
increases. (This is consistent with our intuition.) Note that the per-
formance of the energy detector degrades quickly as L increases
initially from L = 1. At L = 5, the performance degradation is
already almost 40 % compared with the optimal LMP sensing, i.e.,
the average ARE = 0.6. Thus, we can improve the sensing perfor-
mance by exploiting the signal correlation almost twice compared
with the simple energy detector even for small values of L.

4. CONCLUSION AND DISCUSSION

We have considered the loss of energy detection compared with
optimal sensing caused by neglecting the signal correlation in-
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Fig. 2. ARE of the energy detector to the optimal LMP sensing for
L-tap FIR Rayleigh channel with equal tap power averaged over
10000 channel realizations.

duced by multipath delay spread which is common in wireless
channels. We have investigated the loss using Pitman’s ARE, and
have shown that under the L-tap FIR channel model with equal
power i.i.d. tap coefficients the loss of energy detection is no more
than 50 % compared with optimal sensing exploiting the signal
correlation fully. We have seen that the performance of energy de-
tection degrades quickly as the channel length increases initially
and the sensing performance can be improved almost by a factor
of two by exploiting the signal correlation even for short channel
lengths. Future works include the development of such algorithms.
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