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Abstract—A new precoder for precoding-based blind channel
estimation for MIMO-OFDM systems is proposed. In the proposed
scheme, only a small number of data symbols, commensurate
with the channel length, are linearly precoded prior to transmis-
sion to induce the signal correlation needed for the scheme to
blindly estimate the channels. Similar to how pilot symbols are
transmitted, the subcarriers carrying these linearly precoded data
symbols are equi-spaced across the frequency band. The other
subcarriers carry data symbols in the standard way, enabling
MLD per subcarrier and also allowing for MIMO linear precoding
across antennas at each subcarrier. This is in contrast to previous
precoding-based blind channel estimation schemes which precode
all of the data symbols so that every subcarrier carries a linear
combination of symbols, aking the resulting joint MLD problem
infeasible. In addition, this also makes it infeasible to employ
MIMO precoding per subcarrier across the transmit antennas.
The proposed precoder is designed via a multi-stage optimization
process that seeks to minimize both channel estimation error
and symbol estimation error. For channel estimation purposes,
the resulting optimal design offers low-cost features such as sign
change and FFT while providing reasonable channel estimation
performance for low mobility applications.

Index Terms—Blind channel estimation, linear precoding,
OFDM, MIMO, Hadamard matrix.

I. INTRODUCTION

THERE has been a resurgence of interest in blind channel
estimation schemes. The resurgence of interest is evi-

denced by a number of recent papers on this topic [1]–[3]. There
are several reasons for the renewed interest in blind channel
estimation. In current fourth-generation systems based on or-
thogonal frequency-division multiplexing (OFDM) technology,
symbols are sent in blocks, so block-based, iterative channel
estimation is enabled. Thus, for example, one could first employ
a blind channel estimate to obtain initial symbol estimates, and
then use the preliminary symbol estimates to obtain a higher
fidelity channel estimate. The process can then be repeated,
with an exchange of soft information, to iteratively enhance
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both the channel estimates and the data symbol estimates [4],
[5]. Another motivating factor for the renewed interest in blind
channel estimation is the emerging architecture of heterogenous
networks with small cells, such as femtocells that are charac-
terized by low-mobility users. As a result, there is a projected
proliferation of low mobility applications, thereby opening up
an opportunity for blind channel estimation, which typically
requires a relatively large number of samples under quasi-static
channel conditions for good performance.

There exist several blind channel estimation techniques for
OFDM systems. One is the technique based on the redundancy
introduced by the cyclic prefix (CP) [6], [7]. This CP-based
method shows relatively good performance at high signal-to-
noise ratio (SNR) but requires high computational complexity.
Thus, a different framework for blind channel estimation has
recently been proposed based on non-redundant precoding for
OFDM systems [1], [8]–[15] to achieve good performance at
moderate to low SNR at a reasonable computational com-
plexity. In this paper, a new non-redundant, precoding-based
blind channel estimation scheme for MIMO-OFDM systems is
proposed in which only a small number of subcarriers, com-
mensurate with the channel length, carry pre-coded data sym-
bols for blind channel estimation purposes. The overwhelming
majority of carriers transport symbols in a conventional manner,
thereby enabling Maximum Likelihood Detection (MLD) of
data symbols [16] and also simultaneous use of per-carrier
precoding across antennas for data rate enhancement [17].
Previous precoding-based, blind channel estimation schemes
[1], [8]–[15] were premised on linear precoding across all car-
riers which has a number of drawbacks. The linearly precoded
symbols have to be jointly estimated. Thus, linearly precoding
across all carriers renders MLD computationally intractable.
Even minimum mean square error (MMSE) based symbol esti-
mation is highly computationally burdensome due to the high-
dimensional matrix inversion required. In addition, linearly
precoding across all carriers (for blind channel estimation pur-
poses) makes it extremely difficult to simultaneously employ
per-carrier precoding across antennas for data rate enhancement
[17]. Furthermore, such precoding cannot be used in the uplink
where OFDMA is typically used, whereas the proposed sparse
precoder design using only partial subcarriers can readily be
applied to OFDMA-based systems.

In contrast to previous precoder designs (for blind channel
estimation,) the underlying foundation for our sparse precoder
design is a proof that only using a small number of linearly
precoded carriers does not impact channel estimation perfor-
mance, as long as the number of linearly precoded carriers is
greater than the channel length under the equi-spaced sampling
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Fig. 1. System model.

structure. Subsequently operating within the framework of a
sparse design, we develop an optimal precoder for both channel
estimation performance and data symbol decoding performance
(as opposed to previous works which didn’t address optimality
for either case), under a certain mean square error (MSE) crite-
rion. Proofs are provided substantiating the optimality of certain
key features of our design. For example, the proposed precoder
is designed to be well-conditioned, thereby minimizing noise
enhancement that may occur in the data symbol decoding
process, again, only for those small number of carriers carrying
linearly precoded data symbols. As a result of other key features
of our design, the attendant channel estimation and decoding
process can be implemented efficiently with low-cost opera-
tions such as sign change and fast Fourier Transform (FFT).
Numerical results show the efficacy of the proposed design.

Some contents of this paper were presented at several con-
ferences: The optimality of an equal absolute value for the
square precoder matrix was presented in [18], and the idea of
Hadamard precoder matrices was proposed in [19] and their
optimality was proved [20] with the multiple user case. In this
paper, the contents of the conference papers are summarized
and furthermore the optimal precoder design is extended by
relaxing the diagonal dominance constraint on the precoder
and the optimality of equi-spaced precoding is proved with a
perturbation analysis.

Notation Vectors and matrices are written in boldface with
matrices in capitals. All vectors are column vectors. AT and
AH indicate the transpose and conjugate transpose of A, re-
spectively. A(I,J ) is the submatrix of A with the elements
at rows I and columns J for some index sets I and J . [A]i,j
denotes the element of A at the i-th row and j-th column, and
[ai,j ] is the matrix composed of element ai,j at the i-th row and
j-th column. diag(d1, . . . , dn) is the diagonal matrix composed
of elements d1, . . . , dn. A†, ‖A‖F , ‖A‖2, and tr(A) denote
the pseudo-inverse, Frobenius norm, L2-norm, and trace of A,
respectively. ⊗ denotes the Kronecker product, and � and �
stand for the Hadamard (element-wise) product and division,
respectively. In stands for the identity matrix of size n. E{x}
represents the expectation of x. x ∼ CN (μ,Σ) means that
random vector x is complex Gaussian distributed with mean
μ and covariance matrix Σ.

II. SYSTEM MODEL AND BACKGROUND

We consider a Nr×Nt MIMO-OFDM system, where the
transmitter has Nt transmit antennas and the receiver has Nr

receive antennas as shown in Fig. 1. At the transmitter, the
frequency-domain data vector x(i)k =[x

(i)
k (0), . . . , x

(i)
k (N−1)]T

for the i-th OFDM symbol assigned to transmit antenna k is
linearly precoded by a precoder matrix Wk of size N ×N for
blind channel estimation, where N is the number of OFDM
subcarriers, and then OFDM modulated and transmitted, i.e.,
processed by IDFT, attached by a cyclic prefix that is longer
than the channel length, and transmitted. The transmitted signal
from transmit antenna k to receive antenna l passes through
a finite impulse response (FIR) channel hlk=[hlk(0), . . . , hlk

(L−1)]T, 1≤ l≤Nr, 1≤k≤Nt, which is assumed to be time-
invariant over a block of Ns successive OFDM symbols. (The
sample data covariance matrix required for blind channel es-
timation will be computed by using the coherent Ns symbols
later.) At the receiver, collecting the chips corresponding to the
i-th OFDM symbol at receive antenna l and removing the cyclic
prefix portion, we have the received time-domain signal vector
for symbol time i at receive antenna l, given by

y
(i)
l =

Nt∑
k=1

HlkF
HWkx

(i)
k + n

(i)
l , l = 1, . . . , Nr, (1)

where FH is the normalized IDFT matrix, n(i) ∼ CN (0, σ2
nI)

is a noise vector, and Hlk is a circulant channel matrix with
[hT

lk, 0, . . . , 0]
T

as its first column. The final received signal in

frequency domain is given by the DFT of y(i)
l as

ỹ
(i)
l =

Nt∑
k=1

H̃lkWkx
(i)
k + ñ

(i)
l , l = 1, . . . , Nr, (2)

where ñ
(i)
l = Fn

(i)
l , and H̃lk = FHlkF

H is a diagonal matrix
the diagonal elements of which are given by

h̃lk = F̃hlk. (3)

Here, F̃ is the N × L skinny DFT matrix, i.e., the matrix
consisting of the first L columns of the N ×N normalized
DFT matrix F. We assume that the input x(i)

k to the precoder

Wk is independent of the noise n
(i)
l and is the output of

a linear MIMO precoder that is applied to the input data
vector s

(i)
n of dimension D(≤ min{Nt, Nr}), n = 1, . . . , N ,

to enhance the data rate as usual in a typical MIMO system.
The considered two-layer precoding strategy will be explained
in detail in Section V. At this moment, we assume that x(i)

k

has zero mean with E{x(i)
k x

(i)H
k } = σ2

sI and this assumption is
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satisfied by the proposed two-layer precoding strategy. Without
loss of generality, we assume σ2

s = 1 and the superscript (i)
representing the symbol time will be omitted if unnecessary.

A. Precoding-Based Blind Estimation for OFDM Systems

In this subsection, we briefly explain the precoding-based
blind channel estimation for OFDM systems as the background
for our further development in the next sections. The precoding-
based blind channel estimation method is based on precoding
at the transmitter and second-order statistics of the received
signal. To understand the method, first note that the N ×N
covariance matrix Rl := E{ỹlỹ

H
l } of the received signal (2)

at antenna l at the receiver is given by

Rl = H̃l1Q1H̃
H
l1 + · · ·+ H̃lNt

QNt
H̃H

lNt
+ σ2

nI

=

(
Nt∑
k=1

h̃lkh̃
H
lk

)
�Q+ σ2

nI, (4)

under the assumption of Q1 = · · · = QNt
= Q, where Qk =

WkWk
H. We will refer to Q as the square precoder matrix.

The diagonal and off-diagonal elements of Rl are given by

[Rl]i,i=
∑Nt

k=1 |h̃lk(i)|2[Q]i,i+σ2
n and [Rl]i,j=

∑Nt

k=1 h̃lk(i)

h̃∗
lk(j)[Q]i,j for i 	= j, respectively. From this, we have

[Rl]i,j − δijσ
2
n

[Q]i,j
=

Nt∑
k=1

h̃lk(i)h̃
∗
lk(j), (5)

where δij is the Kronecker delta. Most of the precoding-
based blind channel estimation methods for OFDM systems are
based on (5). That is, from the knowledge of Rl and Q (and
additionally σ2

n in some cases), one can properly construct a
vector or a matrix from which the channel can be identified. For
example, consider the method by Gao and Nallanathan [11]. In
their method, they construct

vj :=

[
[Rl]1,j
[Q]1,j

, . . . ,
[Rl]j−1,j

[Q]j−1,j

,
[Rl]j+1,j

[Q]j+1,j

, . . . ,
[Rl]N,j

[Q]N,j

]T
,

F̃j :=

[
F̃(1 : j − 1, :)

F̃(j + 1 : N, :)

]
=

[
F(1 : j − 1, 1 : L)

F(j + 1 : N, 1 : L)

]
, (6)

where F̃j is the matrix resulting from removing the j-th row of
F̃. Then, vj = F̃j

∑Nt

k=1 hlkh̃
∗
lk(j) from (3) and (5). Collecting

the data from all the columns yields

JG
l :=

[
F̃†

1v1 · · · F̃†
NvN

]
F̃ =

Nt∑
k=1

hlkh
H
lk =: Jl, (7)

since [F̃†
1v1 · · · F̃†

NvN ] =
∑

k hlkh̃
H
lk = (

∑
k hlkh

H
lk)F̃

H and
F̃HF̃ = IL. Once JG

l is constructed based on vj which is in
turn constructed from the received signal covariance matrix
Rl and the square precoder matrix Q, the channel can be
identified up to rotational ambiguity by low rank decomposition
of JG

l [21], [22]. (If Q = cIN for some c, the construction of
Jl in (7) is impossible because Jl is constructed from a set
of vectors {vn} which are obtained by element-wise division
of Rl by Q as shown in (6).)

The essential point of the precoding-based blind channel
estimation method is that the elements of the square precoder
matrix Q corresponding to the data acquisition or sampling
points from the data covariance matrix Rl should be non-zero to
exploit (5). For maximal data acquisition for the blind channel
estimation, the authors in [9], [11], [12], [14], [15] proposed the
following square precoder matrix, p 	= 0:

Qp=diag(1−p, . . . , 1−p)+p11T, −(N−1)−1<p<1, (8)

where 1 is the column vector composed of all ones. The
matrix Q in (8) is parameterized by p and the value of p
can be optimized by trading-off between channel estimation
performance and data decoding performance. However, a dense
precoding matrix W resulting from the square root operation on
a fully dense square precoder matrix like Qp in (8), mixes the
signals of all subcarriers, and thus destroys the very desirable
feature of MIMO-OFDM systems that each subcarrier provides
an independent flat-fading Nr ×Nt MIMO channel after IDFT
and DFT. Note in (2) that the elements of the MIMO-precoded
signal vector x

(i)
k are fully mixed by the precoder W. Such

linear precoding across all carriers makes it difficult to employ
MLD of data symbols and per-carrier precoding across anten-
nas for data rate enhancement, as later discussed in Section V.

III. THE PROPOSED SPARSE PRECODER STRUCTURE

In this section, we propose a new precoder that has a sparse
structure, aiming at ML detection of data symbols and low-cost
operation required for blind channel estimation. We assume that
the noise variance is unknown as in [8], [11]–[13], [23]. Let
us consider the single-input single-output (SISO) case first and
then extend to the MIMO case. In the SISO case, the received
signal covariance matrix (4) at the receiver reduces to

R = h̃h̃H �Q+ σ2
nI, (9)

and thus we have [J̃]i,j = [R]i,j/[Q]i,j = h̃(i)h̃∗(j), i 	= j and
[J̃]i,i = ([R]i,i − σ2

n)/[Q]i,i = |h̃(i)|2 for J̃ := h̃h̃H. (The an-
tenna indices are omitted for notational simplicity in the SISO
case).

To reduce the number of subcarriers that are linearly pre-
coded for blind channel estimation, we propose the following
sampling scheme to select the elements from J̃ for the blind
identification of the channel. We choose the same T rows
at T columns where L ≤ T < N , but to avoid selecting the
diagonal elements corrupted by the noise variance, with the
application to the low-SNR case in mind,1 we require that
the indices I = {i1, . . . , iT } ⊂ {1, 2, . . . , N} of the selected
rows are disjoint from those J = {j1, . . . , jT } of the selected
columns, i.e., I ∩ J = ∅. Indeed, such a sampling scheme
facilitates optimal precoder design in Lemmas 1 and 2. The
blind channel estimation based on this sampling scheme is then

1In [24], the authors showed that at high SNR the diagonal elements are
estimated better than the off-diagonal elements. At low SNR, on the other hand,
the off-diagonal elements are estimated better.
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given as follows. Note first that [R]is,jt/[Q]is,jt = h̃(is)h̃
∗(jt)

for is ∈ I and jt ∈ J . Construct

v′
jt
:=

[
[R]i1,jt
[Q]i1,jt

, . . . ,
[R]iT ,jt

[Q]iT ,jt

]T

= F̃(I, :)hh̃∗(jt). (10)

Then, we have F̃(I, :)†v′
jt
= hh̃∗(jt) since the matrix F̃(I, :)

is the matrix composed of the rows I of the skinny DFT matrix
F̃ and is a T × L Vandermonde matrix with full column rank if
T ≥ L. (So is F̃(J , :) in the below.) Collecting the data from
all the columns J yields

J = JI,J := F̃(I, :)†
[
v′
j1
· · ·v′

jT

] (
F̃(J , :)†

)H
= hhH, (11)

then the channel can be obtained from JI,J up to scalar
ambiguity by subspace decomposition.

Note that F̃(I, :)† in (11) is outside the matrix [v′
j1
· · ·v′

jT
] in

the middle, and this makes an implementation of the proposed
algorithm easy, as seen in Section V-A. Under the proposed
structure, the square precoder matrix Q has non-zero off-
diagonal elements at I × J . Due to its symmetric structure by
its definition, however, it has non-zero off-diagonal elements
at I × J ∪ J × I, and the minimum number of non-zero off-
diagonal elements is 2L2 achieved when T = L. Under the
proposed structure of Q, using R(I,J ) is equivalent to using
R(J , I) for the estimation of J via JI,J or JJ ,I due to its
perfect symmetry. An example of the proposed Q with N =
8, T = 2, I = {2, 6} and J = {1, 5} is shown in (12) (see
equation at the bottom of the page).

Next, consider the MIMO case. We define the over-
all received vector across the receive antennas as ỹ :=

[ỹT
1 , . . . , ỹ

T
Nr

]
T

. From (2), the overall frequency-domain chan-

nel matrix H̃ ∈ C
NNr×NNt is described as

H̃ =

⎡
⎢⎣

H̃11 · · · H̃1Nt

...
. . .

...
H̃Nr1 · · · H̃NrNt

⎤
⎥⎦ . (13)

Then, the signal covariance matrix R is given by

R =E{ỹỹH} = H̃(INt
⊗Q)H̃H + σ2

nINNr

=

⎡
⎢⎣

R11 · · · R1Nr

...
. . .

...
RNr1 · · · RNrNr

⎤
⎥⎦ , (14)

where Rpq = (
∑Nt

k=1 h̃pkh̃
H
qk)�Q+ δpqσ

2
nIN for p, q ∈ {1,

. . . , Nr}. Similarly to (10), we divide the element [Rpq]is,jt
with [Q]is,jt to formVpq :=[vpq,j1 , . . . ,vpq,jT ]∈C

T×T , where
is∈I, jt∈J and vpq,jt =[[Rpq]i1,jt/[Q]i1,jt , . . . , [Rpq]iT ,jt/

[Q]iT ,jt ]
T = F̃(I, :)

∑Nt

k=1 hpkh̃
∗
qk(jt). Denote by hk = [hT

1k,

. . . ,hT
Nrk

]T the combined channel vector from transmit an-
tenna k to all receive antennas and by V ∈ C

NrT×NrT the
composite matrix defined by the submatrices {Vpq}. Then, J ∈
C

LNr×LNr is constructed as J = (INr
⊗ F̃(I, :)†)V(INr

⊗
F̃(J , :)†)H =

∑Nt

k=1 hkh
H
k and finally a channel estimate can

be obtained from J up to an Nt ×Nt unitary ambiguity matrix
by subspace decomposition.

IV. OPTIMAL SPARSE PRECODER DESIGN

In this section, we consider the optimal precoder design
under the proposed precoder structure presented in the previous
section. For the optimality criterion, one can consider the
Cramér-Rao bound for blind estimation for the data model (2).
However, such a standard design method is intractable for the
considered problem because the problem is combinatorial, i.e.,
we should choose the discrete sets (I, J ) and the (complex-
valued) values of the elements of Q corresponding to the
positions determined by I and J . To circumvent this difficulty,
we exploit the Markov structure of the estimation statistics, i.e.,

ỹ
(i)
l → R̂l

(a)→ ĴI,J → [ĥl1, . . . , ĥlNt
], where the hat notation

denotes the estimated quantity. Note that the design of the
precoder (square) matrix impacts the step (a) and the following
step in the Markov chain. Thus, our design criterion is to
minimize the MSE in the step (a), i.e., the MSE between ĴI,J
and JI,J (= J). This is a valid criterion since the precoding-

based blind estimation uses R̂l not ỹ(i)
l directly to construct the

estimation statistic ĴI,J .
Define the difference between the estimated (or sample) data

covariance matrix and the true data covariance matrix ΔRl :=
R̂l −Rl where R̂l = (1/Ns)

∑Ns

i=1 ỹ
(i)
l ỹ

(i)H
l from (2). Then,

the difference between v̂′
jt

and v′
jt

in (10) is given by

Δv′
jt
=

[
[ΔRl]i1,jt
[Q]i1,jt

, . . . ,
[ΔRl]iT ,jt

[Q]iT ,jt

]T
, (15)

where is∈I, jt∈J , and the estimation error of JI,J is given by

ΔJ := ĴI,J −JI,J = F̃(I, :)†
[
Δv′

j1
· · ·Δv′

jT

](
F̃(J, : )†

)H
. (16)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1,1 qj1,i1
(
= q∗i1,j1

)
0 0 0 qj1,i2

(
= q∗i2,j1

)
0 0

qi1,j1 q2,2 0 0 qi1,j2 0 0 0
0 0 q3,3 0 0 0 0 0

0 0 0
. . . 0 0 0 0

0 qj2,i1
(
= q∗i1,j2

)
0 0

. . . qj2,i2
(
= q∗i2,j2

)
0 0

qi2,j1 0 0 0 qi2,j2
. . . 0 0

0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 qN,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)
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The Frobenius norm of ΔJ is bounded by

‖ΔJ‖F ≤
√
L‖ΔJ‖2

≤
√
L
∥∥∥F̃(I, :)†∥∥∥

2

∥∥[Δv′
j1
· · ·Δv′

jT

]∥∥
2

×
∥∥∥∥(F̃(J , :)†

)H∥∥∥∥
2

.

First, let us consider the design of I and J . For simplicity, we
assume that T (≥ L) is a divisor of N from here on. (Since L
is a divisor of N in typical OFDM systems, it will be shown
shortly that a big value of T is not required but T = L is
sufficient.) When the condition numbers of F̃(I, :) and F̃(J , :)
are small, the enhancement of the perturbation [Δv′

j1
· · ·Δv′

jT
]

in (16) is small. The minimum value of one for the condition
numbers of F̃(I, :) and F̃(J , :) is achieved only if the indices
of I and J are equi-spaced when T is a divisor of N by the
property of the skinny DFT matrix. This implies that we should
use equi-spaced index sets for I and J . (This will be revisited
soon.). In this case, the optimal indices for I and J are given
respectively by

it=(t−1)
N

T
+ c and jt=(t−1)

N

T
+d, t∈{1, . . . , T} (17)

for some c, d ∈ {1, . . . , N/T − 1} and c 	= d. In addition
to this equi-spaced index condition, we have the following
conditions for Q:

(C.1) Q is positive semi-definite.
(C.2) The diagonal elements of Q are one.
(C.3) Q has non-zero off-diagonal elements only at I × J and

J × I, where |I| = |J | = T , L ≤ T < N , and I ∩ J =
∅. (I and J are equi-spaced.)

Condition (C.1) is for Q = WkW
H
k to be decomposed with a

unique square root [21]. Condition (C.2) guarantees that there
is no power boosting. (There is no reason to boost some sub-
carriers.) Condition (C.3) is the considered sparsity constraint
discussed in the previous section. Thus, the optimal precoder
design problem is formulated as

min
Q

E
{
‖ΔJ‖2F

}
, subject to (C.1), (C.2), and (C.3), (18)

where the expectation is over both the noise and channel2

distributions under the assumption of independent and iden-
tically distributed (i.i.d.) Rayleigh fading channels, i.e., h ∼
CN (0, σ2

hIL). The following theorem provides a property of
an optimal square precoder matrix.

Theorem 1: Under the constraints (C.1), (C.2), and (C.3),
E{‖ΔJ‖2F } is minimized if the absolute values of the off-
diagonal elements of Q at I × J are identical with the value of
1/
√
T , under the assumption of i.i.d. Rayleigh fading channels,

i.e., h ∼ CN (0, σ2
hIL).

2The precoder design for (blind) channel estimation should not assume
a specific channel realization. Instead, the channel distribution should be
exploited.

Proof: E{‖ΔJ‖2F } in (18) is given by

E
{
‖ΔJ‖2F

}
=E

{∥∥∥∥F̃(I, :)†[Δv′
j1
· · ·Δv′

jT

](
F̃(J , :)†

)H∥∥∥∥
2

F

}

(19)

=E

{
tr

(
F̃(J , :)†

[
Δv′

j1
· · ·Δv′

jT

]H(
F̃(I, :)†

)H
×F̃(I, :)†

[
Δv′

j1
· · ·Δv′

jT

](
F̃(J , :)†

)H)}
(20)

=E

{
tr

([
Δv′

j1
· · ·Δv′

jT

]H(
F̃(I, :)†

)H
F̃(I, :)†

×
[
Δv′

j1
· · ·Δv′

jT

](
F̃(J , :)†

)H
F̃(J , :)†

)}
(21)

=tr

(
E

{[
Δv′

j1
· · ·Δv′

jT

]H(
F̃(I, :)F̃(I, :)H

)†

×
[
Δv′

j1
· · ·Δv′

jT

]}(
F̃(J , :)F̃(J , :)H

)†)
,

(22)

where (20) holds because ‖A‖2F =tr(AHA) and (21) holds
because tr(ABC) = tr(BCA). By Lemma 1 in Appendix
and the fact that [(F̃(I, :)†)HF̃(I, :)†]i,i = NL/T 2 for any
equi-spaced index set I, we reduce (22) to E{‖ΔJ‖2F } =
C
∑

is∈I,jt∈J 1/|[Q]is,jt |2 where C := N2L2/NsT
4((LNt/

N)σ2
h + σ2

n)
2. Then, the optimal design problem (18) can be

rewritten as

min
Q

C
∑

is∈I,jt∈J

1

|[Q]is,jt |
2

subject to (C.1), (C.2) and (C.3). (23)

With some permutation matrix Π1, (C.1) is equivalent to Q̄ � 0
since

ΠT
1 QΠ1 =

[
Q̄ 0
0 IN−2T

]
, (24)

where Q̄ contains all the non-zero off-diagonal elements of Q
and some zero elements. It can easily shown that Q̄ can be
expressed as

Π2Q̄ΠT
2 =

[
IT

¯̄Q
H

¯̄Q IT

]
, (25)

where

¯̄Q :=

⎡
⎢⎢⎣
qi1,j1 qi1,j2 · · · qi1,jT
qi2,j1 qi2,j2 · · · qi2,jT

...
...

...
qiT ,j1 qiT ,j2 · · · qiT ,jT

⎤
⎥⎥⎦ , (26)

which contains only all the non-zero off-diagonal elements of
Q, and Π2 is another permutation matrix. Then, the eigenvalues
of Π2Q̄ΠT

2 are given by 1± σt, where {σt, t = 1, . . . , T} are
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the singular values of ¯̄Q. For the positive semi-definiteness of
Π2Q̄ΠT

2 (consequently of Q̄), σt should not be greater than
one. Thus, the optimization problem (23) can be rewritten as

min
Q

C
∑

is∈I,jt∈J

1

|[Q]is,jt |
2

subject to 0<σt≤1, t=1, . . . , T, (C.2), and (C.3). (27)

Note from (26) that the constraints 0 < σt ≤ 1, t = 1, . . . , T
can be replaced with

∑
is∈I,jt∈J

|[Q]is,jt |
2 = tr( ¯̄Q ¯̄Q

H
) =

T∑
t=1

σ2
t ≤ T. (28)

Since the objective function in (27) is a convex function with
respect to |[Q]is,jt |2, the minimum occurs when |[Q]is,jt | for
every (is, jt) is the same as 1/

√
T . �

Corollary 1: With the absolute value |Qis,jt | = ρ/T for all
(is, jt) for some ρ ≤

√
T , the minimum MSE E{‖ΔJ‖2F } is

given by

E
{
‖ΔJ‖2F

}
= CT 2T

2

ρ2
=

N2L2

Nsρ2

(
LNt

N
σ2
h + σ2

n

)2

, (29)

which is independent of T .
The independence of the minimum MSE of T is crucial. We

can choose T as the smallest divisor of N larger than or equal
to L for the maximum sparsity. When L itself is designed to
be a divisor of N as in most practical OFDM systems, simply
T = L. The sparsity of the proposed square precoder matrix is
essential for the compatibility of the blind estimation precoding
with MLD of data symbols and per-carrier precoding across
antenna for data rate enhancement, which will be discussed in
Section V. As noticed by other authors [10], here we also have a
non-zero lower bound for the minimum MSE due to the σ2

h term
in the RHS of (29) as the SNR tends to infinity, i.e., σ2

n → 0,
whereas it vanishes as Ns increases.

Now return to the issue of equi-spaced index sets. Here
we consider the SISO case for simplicity. The sample data
covariance matrix is given by

R̂ = H̃W

(
1

Ns

Ns∑
i=1

x(i)x(i)H

)
WHH̃H

+
1

Ns

Ns∑
i=1

(
H̃Wx(i)ñ(i)H + ñ(i)x(i)HWHH̃H

)

+
1

Ns

Ns∑
i=1

ñ(i)ñ(i)H. (30)

The first term in the RHS of (30) is the desired term, the
second term is the cross-correlation between the signal and the
noise, and the third term is the sample noise covariance matrix.
The possible error in the first term is by the signal correlation
structure not by the noise. The second and third terms are
caused by the noise. At low SNR, the second term is negligible
compared to the third term because of the uncorrelatedness of

the signal and the noise. Thus, we consider the contribution of
the third term, which is given by

ΔJ

(
1

Ns

Ns∑
i=1

ñ(i)ñ(i)H

)
= F̃(I, :)†

[
z′j1 · · · z

′
jT

](
F̃(J , :)†

)H
,

(31)

where z′jt = [zi1,jt , . . . , ziT ,jt ]
T and zis,jt = (1/Ns[Q]is,jt)∑Ns

i=1ñ
(i)(is)ñ

(i)∗(jt). The following theorem shows that equi-
spaced index sets are indeed optimal for minimizing the effect
of the noise.

Theorem 2: For the estimation of J based on ĴI,J con-
structed from the sample data covariance matrix R̂l, the MSE
due to the sample noise covariance matrix is minimized by equi-
spaced sampling from the sample data covariance matrix under
the assumption that T divides N exactly and all |[Q]is,jt | are
equal.

Proof: The MSE for estimating J due to the noise covari-
ance matrix is given by

E

{∥∥∥∥F̃(I, :)† [z′j1 · · · z′jT ] (F̃(J , :)†
)H∥∥∥∥

2

F

}

(a)
= E

{
tr

(
F̃(J, :)†

[
z′j1 · · · z

′
jT

]H(
F̃(I, :)†

)H
F̃(I, :)†

[
z′j1 · · · z

′
jT

]
×
(
F̃(J , :)†

)H)}
(b)
= tr

(
E

{[
z′j1 · · · z

′
jT

]H (
F̃(I, :)F̃(I, :)H

)† [
z′j1 · · · z

′
jT

]}

×
(
F̃(J , :)F̃(J , :)H

)†)
(c)
= c

T∑
i=1

[
G†

I

]
i,i

T∑
j=1

[
G†

J

]
j,j

, (32)

for some positive constant c, where the expectation is over the
noise distribution, GI = F̃(I, :)F̃(I, :)H and GJ = F̃(J , :)
F̃(J , :)H. Here, (a) holds because ‖A‖2F = tr(AHA), (b)
holds because tr(ABC)=tr(BCA) and (c) holds by
Lemma 2 in Appendix. Since F̃(I, :) and F̃(J , :) are T × L
Vandermonde matrices, we have tr(GI)=tr(GJ )=TL/N for
any index set I and J such that |I|= |J |=T . Let the non-zero
eigenvalues of G†

I and G†
J be {λI

i } and {λJ
j }, respectively.

Then, the non-zero eigenvalues of GI and GJ are {1/λI
i } and

{1/λJ
j }, respectively. Thus, the minimization of the MSE (32)

is reformulated as the following optimization problem:

min
{λI

i
,λJ

j }

L∑
i=1

λI
i

L∑
j=1

λJ
j

subject to
L∑

i=1

1

λI
i

=
TL

N
,

L∑
j=1

1

λJ
j

=
TL

N
, λI

i , and

λI
i , λ

J
j > 0. (33)

Due to the separable structure of the problem (33), the
above optimization can easily be solved using Karush-Kuhn-
Tucker conditions. The minimum occurs when all the non-zero
eigenvalues are the same. In the case that T divides N exactly,
this occurs only when the indices are equi-spaced from the
property of the skinny DFT matrix F̃. �
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Theorem 2 is complementary to Theorem 1 since it requires
the off-diagonal values of Q have the same absolute value. Still
it provides an insight into the impact of the noise on sampling.
Negi and Cioffi showed that the equi-spaced pilot tone insertion
is optimal for the training-based channel estimation [25]. In-
terestingly, Theorem 2 shows that the equi-spaced sampling of
the sample data covariance matrix is optimal for the precoding-
based blind channel estimation if all the off-diagonal elements
of the square precoder matrix is equally weighted.

V. TWO-STEP LINEAR PRECODING

In this section, we propose a two-step linear precoding ar-
chitecture composed of the blind channel estimation precoding
presented in the previous sections and the data rate enhancing
MIMO precoding. For the compatibility of the blind precoding
with the data rate enhancing precoding, we further exploit the
sparsity of our precoder square matrix. Based on the result of
the previous section, we set T = L, which is assumed to be
a divisor of N , and set ρ/T for the absolute value of every
element of Q(I,J ) for some 0 < ρ ≤

√
T . ([Q]i,i = 1.) Here,

ρ is the control parameter determining the trade-off between
channel estimation and data decoding. For all such ρ, Q is
positive semidefinite. We further assume that T = 2m for some
non-negative integer m on practical purpose. Our design goal
for the precoder matrix W is to preserve the sparsity of the
square precoder matrix. Our approach to this is not to obtain
W =

√
Q by the simple eigen-decomposition of Q (such a

solution is dense in general) but instead to exploit the sparse
structure of Q. That is, we first collect the non-zero off-diagonal
elements of Q into a 2L× 2L matrix; obtain the square root
of the 2L× 2L matrix; and re-embed the square root into the
precoder matrix. To do this, let us define a 2 × 2 matrix

Q̄mn :=

[
[Q]jm,jn

[Q]jm,in
[Q]im,jn

[Q]im,in

]
, (34)

for m,n ∈ {1, . . . , T} and

Q̄ :=

⎡
⎣ Q̄11 · · · Q̄1T

...
. . .

...
Q̄T1 · · · Q̄TT

⎤
⎦ . (35)

Then, Q̄ ∈ C
2T×2T contains all the non-zero off-diagonal ele-

ments of Q ∈ C
N×N and some of the zero elements of Q. (This

positive-semidefinite Q̄ is the same as the matrix Q̄ defined in
(24) and (25).) For the example of Q in (12), Q̄ is given by

Q̄ =

⎡
⎢⎣
q1,1 q1,2 q1,5 q1,6
q2,1 q2,2 q2,5 q2,6
q5,1 q5,2 q5,5 q5,6
q6,1 q6,2 q6,5 q6,6

⎤
⎥⎦ . (36)

(Note that in this case, q5,1 = q6,2 = q1,5 = q2,6 = 0.) Define
the square root of Q̄ and its partition as

W̄ = [w̄i,j ] = Ū
√

Σ̄ =

⎡
⎣ W̄11 · · · W̄1T

...
. . .

...
W̄T1 · · · W̄TT

⎤
⎦ , (37)

where Q̄ = ŪΣ̄ŪH is the eigen-decomposition of Q̄ and
W̄mn is a 2 × 2 matrix for each (m,n). Now, construct the
precoder matrix by embedding W̄ into the precoder matrix as

W=

⎧⎪⎪⎨
⎪⎪⎩

[
[W]jm,jn [W]jm,in

[W]im,jn [W]im,in

]
=W̄mn for im∈I, jn∈J ,

[W]i,i=1 for i 	∈I,J ,
[W]i,j=0 otherwise.

(38)

It is easy to verify Q = WWH. For the example of Q in (12),
the structure of precoder matrix W is given by

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w̄1,1 w̄1,2 0 0 w̄1,3 w̄1,4 0 0
w̄2,1 w̄2,2 0 0 w̄2,3 w̄2,4 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

w̄3,1 w̄3,2 0 0 w̄3,3 w̄3,4 0 0
w̄4,1 w̄4,2 0 0 w̄4,3 w̄4,4 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (39)

Note that W obtained in this way preserves the sparsity of
Q and only a 2T × 2T submatrix perturbs the structure of
the identity matrix. Now, recall the received signal model at
antenna l:

ỹl = H̃l1Wx1 + H̃l2Wx2 + · · ·+ H̃lNt
WxNt

+ ñl,

for l = 1, 2, . . . , Nr. Due to the structure of our W, we have

ỹl(i)=H̃l1(i)x1(i)+H̃l2(i)x2(i)+· · ·+H̃lM (i)xM (i)+ñl(i),

for each subcarrier i 	∈ (I ∪ J ), since H̃lk is diagonal for each
l, where H̃lk(i) and xk(i) are [H̃lk]i,i and the i-th element of
xk, respectively. Collecting all received signals at subcarrier i 	∈
(I ∪ J ), we have a typical Nr ×Nt MIMO system:⎡
⎢⎣

ỹ1(i)
...

ỹNr
(i)

⎤
⎥⎦ =

⎡
⎢⎣

H̃11(i) · · · H̃1Nt
(i)

...
. . .

...
H̃Nr1(i) · · · H̃NrNt

(i)

⎤
⎥⎦
⎡
⎢⎣

x1(i)
...

xNt
(i)

⎤
⎥⎦

+

⎡
⎢⎣

ñ1(i)
...

ñNt
(i)

⎤
⎥⎦ .

Thus, N − 2T (or N − 2L if T = L) subcarriers are intact
from the blind estimation precoding, enabling MLD per carrier
and also allowing per-carrier precoding across antennas for
data rate enhancement [17]. Note that N � 2L in most OFDM
systems.

Next consider subcarriers i’s ∈ (I ∪ J ). These subcarriers
are mixed by the proposed precoder for blind estimation. For
these subcarriers, we have

ỹl(I ∪ J ) = H̃l1(I ∪ J , I ∪ J )W̄x1(I ∪ J ) + · · ·

+ H̃lNt
(I ∪ J , I ∪ J )W̄xNt

(I ∪ J ) + ñl(I ∪ J ),



7018 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 12, DECEMBER 2014

for each l = 1, 2, . . . , Nr. Collecting the signals at all the
receive antennas yields

ỹI,J =

⎡
⎢⎣
H̃I,J

11 · · · H̃I,J
1Nt

... · · ·
...

H̃I,J
Nr1

· · · H̃I,J
NrNt

⎤
⎥⎦
⎡
⎣W̄ · · · 0

...
. . .

...
0 · · · W̄

⎤
⎦
⎡
⎢⎣
xI,J
1
...

xI,J
Nt

⎤
⎥⎦

+

⎡
⎢⎣
ñI,J
1
...

ñI,J
Nt

⎤
⎥⎦

=Hdiag(W̄, . . . ,W̄)xI,J + ñI,J , (40)

where ỹI,J = [ỹ1(I ∪ J )T, . . . , ỹNr
(I ∪ J )T]T, H̃I,J

lk =

H̃lk(I ∪ J , I ∪ J ), xI,J
k = xk, (I ∪ J ), ñI,J

l = ñl(I ∪ J ),
and the definitions of H, xI,J and ñI,J are clear from the
equation. Since these subcarriers are mixed by the proposed
blind precoder, we need joint processing to decode xI,J .
Note that the proposed blind precoder yields a much smaller
system for joint symbol estimation than the existing fully
dense precoders [9], [11], [14], [15]. One can apply one
of several MIMO encoding and decoding schemes to these
subcarriers such as MMSE filtering via the state-space inversion
technique [26].

A. Sign Determination of the Square Precoder Matrix

From Theorem 1, we know that the equal absolute value de-
sign for the elements of Q(I,J ) is optimal and the signs of the
elements of Q(I,J ) are irrelevant for the channel estimation
performance of the proposed blind scheme since the channel
estimation performance depends on Q(I,J ) only through the
absolute values of the elements of Q(I,J ). However, the de-
termination of the remaining signs for the elements of Q(I,J )
affects the decoding performance. As seen in the above, the
proposed precoding scheme does not affect the decoding of
the subcarriers {1, 2, . . . , N} \ (I ∪ J ), but affects that of the
subcarriers I ∪ J , as seen in (40). For the good decoding
performance, we should minimize the condition number of
W̄ to minimize the noise enhancement. Since the condition
number of W̄ is the square root of that of Q̄ from (37), we
should design the signs of the elements of Q(I,J ) to minimize
the condition number of Q̄. To this end, first note that we
can decompose Q̄ as Q̄ = [q̄i,j ] = I2T + Q̄′ since the diagonal
elements of Q are one in our design. An example of T = 4 is
shown in (41):

Q̄′=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 × 0 × 0 × 0 ×
qi1,j1 0 qi1,j2 0 qi1,j3 0 qi1,j4 0
0 × 0 × 0 × 0 ×

qi2,j1 0 qi2,j2 0 qi2,j3 0 qi2,j4 0
0 × 0 × 0 × 0 ×

qi3,j1 0 qi3,j2 0 qi3,j3 0 qi3,j4 0
0 × 0 × 0 × 0 ×

qi4,j1 0 qi4,j2 0 qi4,j3 0 qi4,j4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (41)

where the positions marked × are for Q(J , I)(= Q(I,J )H).
Q(I,J ) and Q(J , I) are interlaced in Q̄′ with I ∩ J = ∅.

Then, an eigenvalue of Q̄ is the sum of one and an eigenvalue
of Q̄′. Since the trace of Q̄′ is zero, the sum of the eigenvalues
of Q̄′ is zero and thus some of the eigenvalues of Q̄′ are
positive and others are negative. Hence, the spectral gap of
Q̄′ should be made small to make the condition number of Q̄
small. Let −1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λ2T be the eigenvalues of
Q̄′. Then, the desired optimization problem can be formulated
as determining the 2T eigenvalues λ1, . . . , λ2T to minimize
the condition number χ(Q̄) = (1 + λ2T )/(1 + λ1) of Q̄ under
proper constraints, given by

min
{λ1,...,λ2T }

1 + λ2T

1 + λ1

s.t. tr(Q̄′)=
∑
i

λi=0, tr(Q̄′Q̄′H)=
∑
i

λ2
i =2ρ2,

and −1 ≤ λ1 ≤ · · · ≤ λ2T , (42)

where tr(Q̄′Q̄′H) = 2
∑

I,J |qis,jt |2 = 2ρ2 under the proposed
design |qis,jt | = ρ/T .

Theorem 3: Under the assumption that all |[Q]is,jt |, is ∈ I,
jt ∈ J , are equal, the minimum condition number of Q is
achieved when Q(I,J ) is a scaled version of a unitary matrix.

Proof: From (25), Q̄′ can be decomposed as

Π2Q̄
′ΠT

2 =

[
0 ¯̄Q

H

¯̄Q 0

]
. (43)

Thus, the eigenvalues of Q̄′ are given by {±σt, t = 1, . . . , T},
where σt is a singular value of ¯̄Q. Then, the optimal design
problem (42) can be rewritten as

min
{σt}

1 + σ1

1− σ1
, s.t. 1 > σ1 ≥ · · · ≥ σT > 0 and

T∑
t=1

σ2
t = ρ2.

(44)

We have 1 > σ1 ≥ ρ/
√
T from the squared sum constraint in

(44). Note that the objective function in (44) monotonically
increases as σ1 increases within the feasible range [ρ/

√
T , 1).

Hence, the minimum condition number occurs when σ1 =
ρ/

√
T . By (44), we then have σ1 = · · · = σT = ρ/

√
T and

thus ¯̄Q is a scaled version of a unitary matrix. Finally,
Q(I,J ) = ¯̄Q. (See (26).) �

Corollary 2: With the optimal solution, σ1 = · · · = σT =
ρ/

√
T with ρ ∈ (0,

√
T ), the condition numbers of Q̄ (or Q)

and W̄ (or W) are given by

χ(Q̄) =

√
T + ρ√
T − ρ

and χ(W̄) =

√√
T + ρ√
T − ρ

. (45)

Remark 1: Corollaries 1 and 2 describe the trade-off be-
tween the blind channel estimation and the data decoding. Note
that ρ up to

√
T is valid for the positive semi-definiteness of

Q̄. The channel estimation performance can be improved by
increasing ρ up to

√
T , as seen in (29), but the condition number

deteriorates, as seen in (45). Thus, the value of ρ ∈ (0,
√
T )

should be properly chosen for optimal performance. Note that
in our scheme, N − 2L subcarriers are not even affected by the
blind precoding.



NOH et al.: A NEW PRECODER DESIGN FOR BLIND CHANNEL ESTIMATION IN MIMO-OFDM SYSTEMS 7019

TABLE I
THE EIGENVALUES AND THE CONDITION NUMBERS WHEN N = 64 AND T = 4: THE NUMBERS IN PARENTHESIS

ARE EIGENVALUE MULTIPLICITY. (THE NOTATIONS IN THE FIRST COLUMN FOLLOW THE REFERENCES.)

Theorem 3 states that any properly scaled unitary matrix
with elements of an equal absolute value is optimal from the
perspective of the condition number and noise enhancement.
Well known such matrices include the FFT matrix and the
Hadamard matrix, when T = 2m for some integer m. Espe-
cially, the Hadamard matrix HT of size T is advantageous since
it contains only ±1 and thus the operation of obtaining JI,J
from Rl by using (10) and (11) is simple sign change if neces-
sary. The Hadamard matrix HT for T = 2m is constructed as
(for m ≥ 2)

H2 =

[
1 1
1 −1

]
and H2m =

[
H2m−1 H2m−1

H2m−1 −H2m−1

]
.

With the design of Q(I,J ) = ρ/THT , Q̄ is given by
Q̄ = I+ (ρ/T )Π(HT ⊗ I2), where Π is a permutation ma-
trix exchanging rows 2i− 1 and 2i for each i = 1, 2, . . . , T
and Π = ΠT. Note that both matrices 1/

√
T (HT ⊗ I2) and

(1/
√
T )Π(HT ⊗ I2) are orthonormal and symmetric. Since all

the eigenvalues of an orthonormal matrix have modulus one
[27], the eigenvalues of 1/

√
TΠ(HT ⊗ I2) are ±1 due to its

symmetry. Further, since the trace of 1/
√
TΠ(HT ⊗ I2) is

zero and the trace is the sum of eigenvalues, there are exactly
T ones and T negative ones. Therefore, ρ/TΠ(HT ⊗ I2) has
T eigenvalues of the value ρ/

√
T and T eigenvalues of the

value −ρ/
√
T , which coincides with the requirement of the

optimal precoder derived in Theorem 3. Now, let us compare
the condition numbers of several available precoders for the
precoding-based blind channel estimation for OFDM systems
[8], [9], [11], [13]. Table I shows the eigenvalue and condition
number for the square precoder matrix Q for each design. It
is seen that the proposed precoder design is superior to the
previous designs. As seen in the table, for our design, there is
no effective noise enhancement in the inversion process for data
decoding for the subcarriers affected by the blind estimation
precoding.

Since all our design is complete now, we finish this section
by summarizing the proposed algorithm in a practical setting.
We consider the practical case in which T = L = 2m for some
positive integer m, I, and J are equi-spaced as (17) and

Q(I,J ) = (ρ/T )HT . In this case, the proposed algorithm can
be implemented very efficiently as follows.

Encoding
(1) The I ∪ J subcarrier signals are multiplied by the precoder

matrix W̄.
(2) The precoded I ∪ J subcarriers are multiplexed into proper

positions in the subcarrier domain, and then the signal is
OFDM modulated and transmitted.

Decoding
(1) Obtain the elements at I × J from the sample covariance

matrix R̂l, i.e., compute R̂l(I,J ).
(2) Obtain Ψ := R̂l(I,J )� (ρ/T )HT where HT is the

Hadamard matrix of size T .
(3) Inverse fast Fourier transform (FFT) Ψ from the left and

then FFT the resulting matrix from the right to obtain ĴI,J .
(This is because F̃(I, :) and F̃(J , :) are FFT matrices of
size T with some scaling for equi-spaced I and J .)

(4) Obtain the Nt most significant eigenvalues and eigenvectors
of ĴI,J obtained at step (3) by using an efficient algorithm
such as the power iteration method.

(5) Identify the remaining rotational ambiguity.3

Note that the encoding and decoding for blind channel esti-
mation are implemented by well-known low-cost operations
such as sign change, FFT and the power iteration method. Fur-
thermore, the computational complexity for precoding-based
blind channel estimation reduces from O(N2) to O(T 2) by the
proposed method, where |I| = |J | = T and T � N . In data
decoding, the proposed method leaves {1, 2, . . . , N} \ (I ∪ J )
subcarriers untouched and the conventional data rate enhancing
MIMO precoding can be applied to these subcarriers. Thus,
only 2L subcarriers require joint symbol estimation at the
receiver as in (40). The proposed precoder design can be gen-
eralized to the index sets I and J of different cardinality (i.e.,
|I| 	= |J |), but the design with the index sets with the same
cardinality performs better in terms of both channel estimation

3An Nt ×Nt unitary ambiguity matrix in practical systems can be resolved
by using a minimum Np = N2

t pilot signals combined with a least square
estimator [22].
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performance and data symbol decoding performance. The proof
of this is omitted and can be shown based on the proofs of
Theorems 1 and 3.

B. Multiple-User Case

In this subsection, we extend our precoder design for blind
channel estimation to multiple user case. We consider the case
that a single receiver receives signals from multiple transmit-
ters. Such a case occurs when a terminal station is in the cell
boundary and receives signals from interfering basestations as
well as from the desired basestation or simply when a bases-
tation receives signals from multiple terminals. Although the
proposed design does not solve the interference problem fully,
the proposed method can separate the statistics for the blind
channel estimation entirely for different users. This separation
results from our sparse precoder design. Suppose that different
users use different sparse precoder square matrices, i.e., for
each user I is disjoint with I of any other user and so is
J . Such a construction is possible since only L subcarriers
are required for each of I and J . There are N subcarriers
in total; N/T − 1 such constructions are available. Under the
assumption that signals from different users are uncorrelated,
we have the following data model in the K user case:

Rl =

(∑
k

h̃
(1)
lk h̃

(1)H
lk

)
�Q(1) + · · ·

+

(∑
k

h̃
(K)
lk h̃

(K)H
lk

)
�Q(K) + σ2

nI, (46)

where {h̃(j)
lk } is the channel from antenna k to l of user j

in frequency domain, and Q(j) is the square precoder matrix
for user j. When {I,J } is disjoint to each other for different
users, the statistic for blind channel estimation is completely
separated. Of course, there remains some interference from
other users if the estimated sample covariance matrix is used
instead of the true covariance matrix. However, the interference
can be suppressed in case of slow fading since the sample size
Ns for obtaining the sample covariance matrix can be large.

VI. NUMERICAL RESULTS

Simulations were performed to evaluate the proposed pre-
coder design and the corresponding algorithm. First, we vali-
dated the analytic results in the previous sections by considering
a SISO-OFDM system with 64 subcarriers (N = 64), 4-tap
(time-domain) channel (L = 4), and h ∼ CN (0, IL). Since
the effect of symbol constellation is negligible [11], i.i.d.
binary phase-shift keying (BPSK) symbols were used. The
channel estimation performance was measured by the nor-
malized mean square error (NMSE) defined as NMSE =
(1/NMC)

∑NMC

n=1 (‖ĥn − h‖2F /‖h‖2F ), where ĥn denotes the
n-th run estimate of h and NMC is the number of total Monte
Carlo runs (NMC = 1, 000). We used Ns = 300 symbols to
construct the sample data covariance matrix.

Throughout the simulation, for the proposed method and
other considered methods, we do not adopt the impractical
assumption of perfectly known rotational ambiguity at the
receiver. To resolve the rotational ambiguity matrix, we used

Fig. 2. NMSE versus SNR for different T and ρ in a SISO case where Ns =
300: (a) equal power delay profile and (b) exponential power delay profile.

Fig. 3. NMSE versus the block size Ns in the SISO case where SNR 40 dB
(assuming known phase ambiguity).4

the minimum number of pilot tones with 10 dB power boosting
(only Np = N2

t pilot tones for the entire Ns symbol period)
and applied the least squares method in Proposition 2 of [22].
Fig. 2 shows the NMSE of the proposed design versus SNR,
averaged over random channel realizations for different values
of T and ρ: Fig. 2(a) for an equal power delay profile given
by h ∼ CN (0, σ2

hI) and Fig. 2(b) for an exponential power
delay profile given by σ2

h,l = E{|h(l)|2} = e−2l/5 for 0 ≤ l <

L. Here, the SNR is defined as E‖h‖2/Nσ2
n. As predicted

by Theorem 1 and Corollary 1, the estimation performance
improves as ρ increases, and the performance difference caused
by different T is negligible even in Fig. 2(b). Also, it is seen
that there exists a performance floor at high SNR for given
Ns, as predicted by Corollary 1. However, the performance
floor for ρ ≥ 1 is below −20 dB which is already sufficient
for coherent decoding. We investigated the behavior of the
estimation performance floor at high SNR (e.g., SNR = 40 dB)
as the block size Ns increases. Fig. 3 shows the corresponding
result. As expected from Corollary 1, the performance improves
as Ns increases according to Θ(1/Ns). We performed the
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Fig. 4. Comparison with the previous designs in a 2 × 2 MIMO: Ns = 500 and σ2
h,l = E{|h(l)|2} = e−l/5 for 0 ≤ l < L. (a) Channel estimation

performance. (b) Data decoding performance.

perturbation analysis in [28] and our simulation result matches
the analytic result very well.4

With the verification of the analytic results, we then investi-
gated the performance of the proposed precoder in the MIMO
case of Nt = Nr = 2. In the MIMO case, we used Ns = 500
and the channel model with an exponential power delay profile
given by σ2

h,l = E{|h(l)|2} = e−l/5 for 0 ≤ l < L. We first
compared the performance of the proposed method to those of
several existing non-redundant precoding-based blind methods
[9], [11], [13] capable of MIMO channel estimation. Fig. 4(a)
shows the channel estimation performance. Because of our
equi-spaced sampling, F̃(I, :) and F̃(J , :) in (11) has the
condition number of one and thus there is no noise enhancement
during the construction of JI,J . Hence, the proposed algorithm
yields a good performance at the low SNR range. However, it
saturates quickly than previous methods that use all subcarriers
(i.e., more samples for one symbol time), as expected. In
Fig. 4, we also plotted the performance of a training-based
least square (LS) channel estimator that uses (i) Np = N2

t and
(ii) Np = (Nt + 1)Nt pilot symbols for channel estimation.
(Note that all the considered blind channel estimation meth-
ods used Np = N2

t pilot symbols for resolving the ambiguity
matrix for the entire Ns symbol block.) Indeed, with the
same amount of pilot tones, the training-based method is not
comparable to the blind methods. Fig. 4(b) shows the BER
performance of the considered designs for a set of randomly
generated channel vectors. Here, since the proposed precoder
does not affect N − 2L subcarriers at all, we used MLD
approach to detect the two transmitted bits for each of the
unaffected subcarriers for the proposed design. (This is the
benefit of the proposed design.) For the remaining 2L subcarrier
channels, we used the MMSE inversion to the effective channel
based on the true noise variance. For all other methods that
linearly precode all N = 64 subcarriers, we constructed a 2N
dimension data model to apply linear MMSE filtering for data

4The analytical result in [28] gives expressions for the errors incurred in the
data covariance estimation due to the finite sample size without considering
the error in the phase ambiguity estimation. For the purpose of comparison,
the phase information is assume to be known perfectly for the proposed
estimation method in Fig. 3.

Fig. 5. Sum-rate comparison in a 2 × 2 MIMO where Ns = 500.

symbol detection. Note that for this big system the overall MLD
approach is computationally impossible. It is shown that the
proposed precoder is superior to the other precoders in the
BER performance. This is because for the proposed precoder,
N − 2L subcarriers are not even affected and the mixed 2L
subcarrier channels are unmixed by the inverse of the well-
conditioned precoder matrix.

Finally, we investigated the sum-rate performance of the
proposed precoder in the 2 × 2 MIMO cases, and the result
is shown in Fig. 5. Here, the sum rate computation is based on
the typical training-based rate computation method, explained
as follows. For simplicity, in the SISO case, we have the data

model ỹ = ˜HWx+ ñ from (2). Since H̃ = ˆ̃H+ΔH̃ with the

estimated channel, we have a new data model ỹ = ˆ̃HWx+
(ñ+Δ ˜HWx). However, for the previous dense precoded
designs, achieving the capacity of this new channel is not
realizable in practice. Thus, we used a further processed prac-
tical model F ˆ̃HW

ỹ = x+ F ˆ̃HW
(ñ+Δ ˜HWx), where F ˆ̃HW

is the MMSE filter based on ˆ̃HW. Then, we assumed an
independent stream with equal power for each subcarrier and
computed the rate for each subcarrier based on the simulation
result on the MSE of ΔH̃. For the MIMO case, we simply
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extended the SISO case accordingly. For each of the other
methods, the design parameter was swept over a feasible range,
and the best one among the swept values was chosen. It is
seen that the proposed precoder is also superior to the existing
designs relative to sum rate performance, as well as BER.

VII. CONCLUSION

We have considered the precoder design for the precoding-
based blind channel estimation for MIMO-OFDM systems. We
have proposed a new precoder based on a sparse structure.
The main advantage of the proposed precoder is that it is
compatible with the data rate enhancing MIMO precoding by
using minimal subcarriers to introduce signal correlation neces-
sary for blind channel estimation and leaving most subcarriers
unaffected. The proposed precoder is well conditioned and the
corresponding blind estimation algorithm can be implemented
very efficiently with low cost operations such as sign change
and FFT. The proposed precoder design can be generalized by
considering the case of partial channel state information at the
transmitter via limited feedback and this scenario is practically
useful. In addition, the pilot signal required for resolving the
ambiguity matrix can be minimized effectively or jointly used
for more accurate semi-blind channel estimation [29]–[31].
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Δv′
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], where GI = F̃(I, :)F̃(I, :)H. Then, the di-

agonal elements of C are given by (see equation at the bottom
of the page). The following is known from [32]:
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∗
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|hlk

}
=

1

Ns
[Rl]it,iu [Rl]jn,jm, (51)

where En{·|hlk} is the expectation over the noise distribution
for given channel realization. Remember Rl :=En{ỹlỹ

H
l |hlk}=

(
∑

k h̃lkh̃
H
lk)�Q+ σ2

nI. So, any [Rl]it,iu [Rl]jn,jm = 0 for
t 	= u or m 	= n because of the proposed sparse structure of
Q, i.e., [Q]i,j = 0 for (i, j) 	∈ I × J ∪ J × I and I ∩ J = ∅.
Thus, the term in (51) is zero and the second terms in (47)–(49)
are all zero. Also, we have

[Rl]it,it =

(
Nt∑
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∣∣∣h̃lk(it)
∣∣∣2
)
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with [Q]i,i = 1 for all i ∈ {1, . . . , N} by Constraint (C.2). Now
taking expectation of (50) over channel distribution yields

1
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,

where the fact h̃lk = F̃hlk and the assumption of the zero-
mean proper complex Gaussian distribution of hlk are used.
Therefore, the expectation of the diagonal elements of C over
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the noise and channel distributions are given by the theorem of
iterated expectation as

E{[C]m,m}=
[
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I
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Eh
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since [G†
I ]i,i = NL/T 2 for all i for equi-spaced indices. Now

consider the off-diagonal elements of C, given by
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Note that jm and jn are not equal. By (51) and the sparsity of
the proposed Q, all the off-diagonal elements have expectation
zero. Hence, the claim follows. �
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,

where GI = F̃(I, :)F̃(I, :)H and q2 is the absolute value of
off-diagonal elements of Q.
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and [D]m,m is rewritten as
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ñ(i)(i2)ñ
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Since I ∩ J = ∅, the expectation of ñ(i)(im)ñ(i)(jn) is zero
for all m,n and so is the expectation of ñ(i)(jm)ñ(i)(jn) for
m 	= n. Thus, we have
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where step (a) is by the assumption of q2 = |[Q]im,jt |2 for 1 ≤
t ≤ T . The off-diagonal elements of D are all zero after the
expectation since ñ(i)(im)ñ(i)(in) = 0,m 	= n. Thus, we have
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Hence, the claim follows. �
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