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Abstract—In this paper, channel estimation for massive
multiple-input multiple-output (MIMO) systems with a large
number of transmit antennas at the base station is considered,
and a new algorithm for pilot beam pattern design for optimal
channel estimation under the assumption of Gauss-Markov chan-
nel processes is proposed. The proposed algorithm designs the
optimal pilot beam pattern sequentially by exploiting the statistics
of the channel, antenna correlation, and temporal correlation. The
algorithm provides a sequentially optimal sequence of pilot beam
patterns for a given set of system parameters. Numerical results
show the effectiveness of the proposed algorithm.

I. INTRODUCTION

MIMO systems using very large antenna arrays, so called
massive MIMO systems, have been an active research area
to achieve high spectral efficiency [1]–[3]. Massive MIMO
can provide performance scaling with the number of transmit
antennas using simple signal processing [1]. Such benefits, in
practice, can be limited by channel estimation accuracy [4].
Since the available orthogonal training sequences for channel
estimation are limited by either the channel coherence time
or the interference from multiple users in neighboring cells,
near perfect channel estimation can be infeasible for massive
MIMO systems.

To tackle the challenges of channel estimation in massive
MIMO systems, most recent works consider methods using
the reciprocity benefits of time-division duplexing (TDD) to
exploit channel reciprocity [4], [5]. In this case, the pilot
overhead related to channel estimation can be reduced via
uplink channel sounding because the required orthogonal train-
ing sequences become independent of the number of transmit
antenna at the base station and dependent on the number
of serviced users. In the frequency-division duplexing (FDD)
case, channel estimation becomes more challenging because
traditional small array (e.g., two, four, or eight antenna)
MIMO channel sounding approaches require far too much
time overhead. There has only been limited worn on massive
MIMO channel estimation techniques with FDD [6], [7]. These
techniques exploit spatial correlation or closed-loop training
to get improved estimation performance. If transmit channel
adaptation is needed, FDD systems also require potentially
substantial feedback overhead [8]–[10].

This paper considers the problem of downlink channel
estimation in FDD massive MIMO systems. We develop a new
pilot beam pattern design in which orthogonal pilot sequences
are bounded by the channel coherence time. We propose an
efficient algorithm which provides the sequentially optimal

pilot beam pattern to minimize the channel estimation mean
square error (MSE). The key idea behind the new algorithm is
the use of the second-order statistics of the channel, the tem-
poral correlation, and the signal-to-noise ratio (SNR) jointly
to derive the pilot beam pattern at each training instance.

A. Notation

Vectors and matrices are written in boldface with matrices
in capitals. All vectors are column vectors. AT , AH , and A

∗

indicate the transpose, Hermitian transpose, and the complex
conjugate of A, respectively. [A]i,j denotes the element of
A at the i-th row and j-th column. diag(d1, · · · , dn) is
the diagonal matrix composed of elements d1, · · · , dn and
diag(A) gives a vector containing the diagonal elements of
matrix A. For a vector a, we use ‖a‖2 for 2-norm. For
a matrix A, tr(A) and var(A) denote the trace of A, and
variance operator, respectively. The Kronecker product is ⊗,
and vec(A) operator creates a column vector by stacking the
elements of A columnwise. E{x} represents the expectation
of x, and In stands for the identity matrix of size n.

II. SYSTEM MODEL

A. System Set-Up

We consider a massive MIMO system with Nt transmit
antennas and a single receive antenna (Nt ≫ 1), as shown in
Fig. 1. At the k-th symbol time, the received signal is given
by

yk = h
H
k sk + wk, k = 1, 2, . . . (1)

where sk is the Nt × 1 transmitted symbol vector at time k,
hk is the Nt × 1 MISO channel vector at time k, and wk

is a zero-mean independent and identically distributed (i.i.d.)
complex Gaussian noise at time k with covariance σ2

w. We
assume that the channel is time-varying and Rayleigh-faded
under a state-space model, i.e., the channel dynamic is given
by the first-order stationary Gauss-Markov process

hk+1 = ahk +
√

1− a2bk, (2)

satisfying the Lyapunov equation

Rh = a2Rh + (1 − a2)Rb, (3)

where a is the temporal fading correlation coefficient,1 bk is a
zero-mean and temporally independent plant Gaussian vector.

1Under Jakes’ model, a = J0(2πfDTs) [11], where J0(·) is the zero-order
Bessel function, fD is the Doppler frequency shift, and Ts is the transmit
symbol interval.
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Fig. 1. Massive MIMO system model, k = lM +m.

For stationarity, Rb = E{bkb
H
k } = Rh = E{hkh

H
k } for all

k.

We assume that the transmission is continuously slotted
with M consecutive symbols as one slot and that each slot
is composed of a training period of Mp symbols and a data
transmission period of Md symbols (M = Mp +Md). During
training periods, a sequence of properly designed known
pilot transmit vectors sk, k ∈ Ip := {k = lM + m|l =
0, 1, 2, · · · ,m = 1, 2, · · · ,Mp} is transmitted and the channel
is estimated. (Note that sk at training symbol time k is the pilot
beam pattern at time k.) During data transmission periods, on
the other hand, unknown data is transmitted. Here, transmit
beamforming can be applied based on the estimated channel
during the training period.2

B. Channel Estimation

We consider the minimum mean square error (MMSE)
channel estimation based on the current and all previous

observations during training periods, i.e., ĥk|k := E{hk|y(k)p }
where y

(k)
p is all observations during the pilot transmission up

to symbol time k, given by

y(k)p = {yk′ |k′ ≤ k, k′ ∈ Ip}.

Note that the system equation (1) can be rewritten as

yk = s
H
k hk + wk, k = lM +m ∈ Ip. (4)

Then, (2) and (4) form a state-space model and the optimal
channel estimation is given by Kalman filtering and prediction
applied to this state-space model [12]. During the training
period, a measurement update step at each symbol time is
available due to the known pilot pattern, and the Kalman
channel estimate and the error covariance matrix are given
by [12]

ĥk|k = ĥk|k−1 +Kk(yk − s
H
k ĥk|k−1), (5)

Pk|k−1 = a2Pk−1|k−1 + (1− a2)Rh, (6)

Pk|k = Pk|k−1 −Kks
H
k Pk|k−1, (7)

with ĥ1|0 = 0 and P1|0 = Rh, where Kk =
Pk|k−1sk(s

H
k Pk|k−1sk + σ2

w)
−1, and Pk|k and Pk|k−1 are

2For transmit beamforming in FDD, some form of channel state information
(CSI) should be fed back to the transmitter from the receiver. Here, a quantized
yk can be fed back and channel estimation is performed at the transmitter,
or channel estimation is performed at the receiver and the quantized channel
estimate can be fed back. The focus of the paper is not feedback quantization
but optimal design of the pilot beam pattern for channel estimation.

the estimation and prediction error covariance matrices, re-
spectively, defined as

Pk|k′ = E
{

(hk − ĥk|k′)(hk − ĥk|k′ )H |y(k′)
p

}

, (8)

where ĥk|k′ := E
{

hk|y(k
′)

p

}

. During the data transmission
period, the channel is predicted without the measurement
update step, based on the last channel estimate of the previous
training period as [12]

ĥlM+Mp+i|lM+Mp
= aiĥlM+Mp|lM+Mp

(9)

PlM+Mp+i|lM+Mp
= a2iPlM+Mp|lM+Mp

+ (1− a2i)Rh,

where i = 1, . . . ,Md. During the data transmission period,
transmit beamforming can be applied based on the current

channel estimate ĥlM+Mp+i|lM+Mp
, i = 1, . . . ,Md. For

maximum rate transmission, eigen-beamforming [1], [13] can
be applied. For maximal ratio transmit beamforming based on
the current channel estimate, the beamforming weight vector
is given by

sk =
ĥlM+Mp+i|lM+Mp

‖ĥlM+Mp+i|lM+Mp
‖2

dk, (10)

where dk is the k-th data symbol with signal power ρd (k =
lM +Mp + i).

III. THE PROPOSED PILOT BEAM PATTERN DESIGN

In this section, we propose a pilot beam pattern design
method for the channel estimation considered in the previous
section under an estimation MSE criterion. The channel esti-
mation MSE is directly related to the effective signal-to-noise
ratio (SNR) and the training-based channel capacity [14].

Note from (9) that during the l-th data transmission period,
the channel estimation error depends only on a, Rh and
the estimation error covariance matrix PlM+Mp|lM+Mp

at
the last pilot symbol time. Since a and Rh are given, we
need to minimize the estimation MSE, tr(PlM+Mp|lM+Mp

),
at the last pilot symbol time by properly designing the pi-
lot beam pattern sequence {sk, k = l′M + m, l′ ≤ l,
m = 1, · · · ,Mp}. Note that PlM+Mp|lM+Mp

is a function of
S := {sj|j = l′M+m,m = 1, · · · ,Mp, j ≤ lM+Mp}. Thus,
to minimize the MSE at time k = lM+Mp, S should be jointly
optimized. However, such joint optimization is too complicated
since the impact of S on PlM+Mp|lM+Mp

is intertwined.
Furthermore, optimal channel estimation at k = lM + Mp

for some l is not the only optimization goal since the MSE
at k = l′M + Mp for each and every l′ < l should be
optimized for the l′-th data transmission period. Hence, we
adopt a greedy sequential optimization approach to design the
pilot beam pattern sequence. That is, we optimize pilot sk at
time k to minimize tr(Pk|k), given sk′ at all pilot symbol time
k′ < k, starting from k = 1.

Problem 1: For each pilot symbol time k starting from 1,
given sk′ for all pilot symbol time k′ < k, design sk such that

min
sk

tr
(

Pk|k

)

(11)

s.t. ‖sk‖22 = ρp. (12)
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In this paper, we consider the MISO case only. In the MIMO
case in which channel estimation is performed at each receive
antenna separately, the MISO result here can directly be
applied. The MIMO case with joint processing across the
multiple receive antennas for channel estimation is beyond the
scope of the current paper.

A. The Proposed Algorithm

In the MISO case, the solution to Problem 1 is given by
the following proposition.

Proposition 1: Given all previous pilot sk′ (k′ < k), the
pilot beam pattern sk at time k minimizing tr(Pk|k) is given by
a scaled dominant eigenvector of the error covariance matrix
of the Kalman prediction for time k.

Proof: Case 1) k 6= lM + 1: From (7), argminsk tr(Pk|k)
can be written as

argmax
sk

tr
(

Pk|k−1sk(s
H
k Pk|k−1sk + σ2

w)
−1

s
H
k Pk|k−1

)

.

(13)
Since tr(ABC) = tr(BCA), (13) can be rewritten as

argmax
sk

tr
(

(sHk Pk|k−1sk + σ2
w)

−1
s
H
k P

2
k|k−1sk

)

. (14)

Note that (14) is the generalized Rayleigh quotient with respect
to (w.r.t.) the pencil (P2

k|k−1,Pk|k−1 + σ2
w/ρpINt

). Thus, for

any non-zero vector sk, (14) satisfies the following bound [15]

ρpλ
2
Nt

ρpλNt
+ σ2

w

≤
(sHk P

2
k|k−1sk)

sHk

(

Pk|k−1 + σ2
w/ρpINt

)

sk
≤ ρpλ

2
1

ρpλ1 + σ2
w

,

(15)

where λ1 and λNt
are the largest and smallest eigenvalues

of Pk|k−1, respectively, and optimal sk is given by the
eigenvector of the Kalman prediction error covariance matrix
Pk|k−1 corresponding to λ1 scaled by

√
ρp.

Case 2) k = lM +1: In this case, we have Md prediction
steps without measurement update steps before the first pilot
symbol time k in the l-th slot. The measurement update form
(7) at k is valid with Pk|k−1 replaced by the Kalman prediction
for time k based on all the previous pilot beam patterns given
by

Pk|(l−1)M+Mp
= a2MdP(l−1)M+Mp|(l−1)M+Mp

+(1−a2Md)Rh.

Thus, the proof in Case 1) is applicable to this case just with
Pk|k−1 replaced by Pk|(l−1)M+Mp

. �

Thus, the optimal sk is obtained from the Kalman pre-
diction error covariance matrix which is given for given pilot
sk′ , k′ < k. Interestingly, it can be shown that the pilot beam
pattern sk obtained from (13) is equivalent to the first principal
component direction of Pk|k−1 given by

argmax‖sk‖2

2
=ρp

var
(

s
H
k (hk − ĥk|k)

)

. (16)

Note that to obtain the (sequentially) optimal sk, we
need to perform the eigen-decomposition (ED) of the Kalman
prediction error covariance matrix with size Nt × Nt at each
pilot symbol time k and this is computationally expensive

since Nt is large for massive MIMO systems. The following
proposition provides a useful property of the eigen-space of
the Kalman prediction error covariance matrix that can be
exploited for constructing an efficient beam pattern design
algorithm.

Proposition 2: The Kalman filtering error covariance ma-
trix Pk|k and the Kalman prediction error covariance matrix
Pk|k′ generated with sequentially optimal sk obtained from
Proposition 1 are simultaneously diagonalizable with Rh for
any k and k′(< k), under the assumption of P1|0 = Rh.3

Proof: Proof is by induction. Let Rh = UΛ1U
H be the ED of

Rh. First note that P1|0 = Rh. For any pilot symbol time k =
lM +m (m = 1, · · · ,Mp), suppose that Pk|k−1 = UΛkU

H

is the ED of Pk|k−1, where Λk := diag(λk,1, . . . , λk,Nt
) and

km := argmaxi λk,i. By Proposition 1, sk is given by a scaled
eigenvector of Pk|k−1 corresponding to the largest eigenvalue
λk,km

. Then, from the measurement update (7), we have Pk|k,
given by

Pk|k = Udiag

(

λk,1, . . . , λk,km−1,
λk,km

σ2
w

ρpλk,km
+ σ2

w

,

λk,km+1, . . . , λk,Nt
)UH (17)

=: UΛ̄kU
H . (18)

Thus, Pk|k and Pk|k−1 are simultaneously diagonalizable.
Furthermore, it is easy to see that after the prediction step
(6), Pk+1|k and Pk|k are simultaneously diagonalizable. Since

P1|0 = Rh = UΛ1U
H , Pk|k and Pk|k−1 in the first training

period have the same set of eigenvectors as Rh.

Now consider a symbol time k during the first data trans-
mission period. In this case, the prediction error covariance
matrix is given by

PMp+i|Mp
= a2iPMp|Mp

+ (1 − a2i)Rh

= U
(

Λ1 − a2i(Λ1 − Λ̄Mp
)
)

U
H , (19)

where i = 1, . . . ,Md. Thus, any prediction error covariance
matrix during the first data period is simultaneously diagonal-
izable with Pk|k for k ≤ Mp. Since this Kalman recursion
repeats, we have proved the claim. �

Algorithm 1 Sequentially Optimal Pilot Beam Pattern Design

Require: Perform the ED of Rh = UΛ1U
H . Store λ1 =

diag(Λ1) and U = [u1, · · · ,uNt
].

λ = λ1 where λ = [λ1, · · · , λNt
]T

while l = 0, 1, · · · do
for m = 1 to M do

if m ≤Mp then
i = argmaxj λj

sk =
√
ρpui

λi ← λiσ
2

w

ρpλi+σ2
w

end if
λ← a2λ+ (1− a2)λ1

end for
end while

3Such an initial parameter is a typical value for the Kalman filter, there will
be no loss.
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Fig. 2. MSE and SNR versus time index k, SNR=20dB, v = 3km/h: (a) r = 0.4 and (b) r = 0.8. (The dotted rectangles denote the pilot transmission
periods.)

Thus, all Kalman prediction error covariance matrices that
are used for sequentially optimal pilot beam pattern design,
have the same set of eigenvectors as Rh. Note that (17) shows
how a sequentially optimal pilot beam pattern at time k reduces
the channel estimation error by changing the eigenvalue distri-
bution and (19) shows how the eigenvalues of the channel
prediction error covariance matrix change during the pure
prediction step. Exploiting these facts, we can construct an
efficient algorithm to obtain the sequence of optimal pilot beam
patterns that sequentially minimize the channel estimation
MSE at each given symbol time. The algorithm is summarized
in Algorithm 1.

In the proposed algorithm, the dominant eigenvalue λi

is tracked at each symbol time during the training period.
That is, the maximum eigenvalue index is searched and the
corresponding eigenvector ui is used as the pilot beam pattern
for the corresponding symbol time. After incorporating the
reduction of the dominant eigenvalue by the measurement
update based on the pilot beam pattern and the eigenvalue
change by the prediction step, the dominant eigenvalue index
for the next time step is searched again and this operation
iterates. The proposed algorithm can be run only if the channel
statistics a, Rh, the slot information (Mp,Md) and SNR
are known, and the optimal sequence of pilot beam patterns
depends on these parameters. Unless the antenna elements
are uncorrelated, we have a nontrivial optimal sequence. The
necessary parameters can be shared between the transmitter
and the receiver at the beginning of the transmission session,
and then the receiver can run the algorithm to know the
currently used pilot pattern by itself. Note that the proposed
algorithm requires the ED of Rh only once and all other
computation is simple arithmetic.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate
the performance of the proposed algorithm. Since massive

MIMO systems assume Nt ≫ 1, we consider Nt = 32
transmit antennas and a single receive antenna, and set Mp = 4
and M = 8 due to the insufficient pilot training. We adopt
2.5GHz carrier frequency and a symbol duration of 100µs. We
compare two different cases: v = 3km/h, 30km/h in which
a = 0.9999, 0.9995, respectively. The considered channel spa-
tial correlation model is the quadratic exponential correlation
model [16], [17], given by

[Rh]i,j =

{

r(j−i)2 if j ≥ i
(

r(i−j)2
)∗

if j < i
, (20)

where |r| < 1 and normalized so that tr(Rh) = 1. The
channel estimation performance was measured by the trace
of the Kalman estimation error covariance, averaged under
1, 000 Monte Carlo runs. The noise variance σ2

w is determined
according to the SNR, i.e., SNR =

ρp

σ2
w

(ρp = ρd = 1),

and the received SNR is defined as
|sHk ĥk|k′ |2

sH
k
Pk|k′sk+σ2

w

imposed

by imperfect channel estimation.

We first compared the performance of the proposed method
to several existing methods [18] in Fig. 2. For the orthogonal
and random pilot methods based on the Kalman filter, we
considered a round-robin selection for the initialized pilot
beam patterns. Fig. 2 shows the proposed algorithm tracks the
channel state fast during tracking periods and also guarantees
the received SNR gain. Because of our tracking of spectral
distribution of the channel MMSE, the proposed method con-
verges more quickly as the antenna spatial correlation increases
by comparing Fig. 2(a) with (b). Note that the proposed
method has about an SNR loss of 2dB compared to the perfect
channel estimation case in Fig. 2(b). For the fast fading process
with v = 30km/h in Fig. 3, the channel MMSE and the
received SNR shows a repetitive trajectory curve since the
channel MMSE increased during data transmission periods,
as expected (6). There is some loss of performance in channel
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Fig. 3. MSE and SNR versus time index k, SNR=20dB, v = 30km/h: (a) r = 0.4 and (b) r = 0.8.

estimation and the received SNR due to the increased temporal
fading correlation affecting the spectral distribution of the
channel MMSE, however, the proposed method still shows
good performance.

V. CONCLUSIONS

We have proposed a new algorithm for the optimal pilot
beam pattern design in massive MIMO systems using a first-
order stationary Gauss-Markov channel process. The proposed
algorithm jointly exploits the statistics of channel, antenna
correlation, and temporal correlation to provide a sequentially
optimal pilot beam pattern for a given set of system parameters
with low computational complexity.
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