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Millimeter-wave (mm-wave) and sub-terahertz 
(sub-THz) communications are expected to be 
one of the biggest beneficiaries of the emerging 
reconfigurable intelligent surface (RIS) technol-

ogy. RISs can compensate for large path loss and block-
age inherent to the mm-wave and sub-THz frequency 
bands to yield enhanced communication performance in 
these bands. To achieve high beamforming gain and real-
ize the enhanced performance in RIS-assisted wireless 
communication, the acquisition of accurate channel 
state information (CSI) is critical. In this article, we pro-
vide an overview of channel estimation for RIS-assisted 
mm-wave/sub-THz communication to address technical 
challenges, tradeoffs, channel estimation frameworks, 
and training signal design. We summarize the recent RIS-
related sparse channel estimation approaches based on 
beam-space, sparse recovery, array signal processing, 
and data-driven techniques, highlighting several chal-
lenges for future research.

Introduction
Mm-wave and sub-THz communications are considered 
as one of the key technologies for 5G and beyond to sup-
port rate-demanding mobile applications such as extend-
ed reality encapsulating augmented/virtual/mixed 
realities. The large path loss in the sub-THz bands can be 
compensated for by beamforming based on large-scale 
antenna arrays. Recently, RISs have emerged as one of 
the most promising candidates as an evolving wireless 
technology [1], [2]. An RIS consists of low-cost passive 
elements and reflects incident signals like a scatterer in 
the propagation environment. Each RIS reflecting ele-
ment can be controlled in a software-defined manner so 
that the reflected signals create a desirable multipath 
effect such as signal focusing and interference cancella-
tion, and the radio environment is controlled to improve 
wireless communication performance. Especially, com-
bining mm-wave/sub-THz and RISs can yield highly posi-
tive effects such as mitigating propagation blockage in 
the mm-wave/sub-THz bands with additional paths and 
reducing the number of required antennas at transceiv-
ers to achieve target performance.

To harness such benefits of RIS-assisted communi-
cation, it is crucial to acquire accurate CSI for high-gain 
beamforming. An RIS-assisted communication channel 
is composed of two subchannels: the direct channel be-
tween the base station (BS) and a user equipment (UE) 
and the indirect channel generated by the RIS. The end-
to-end channel between the BS and the UE can be esti-
mated at a link end in a conventional manner. However, 
it is challenging to estimate individual channels between 
the RIS and two link ends and separate the effect of the 
RIS from the channel estimate due to the passive opera-
tion of RISs. In addition, the sparse scattering nature 
of mm-wave/sub-THz channels should be exploited for 

channel estimation to work with fewer training signals 
or suppress channel estimation errors. There has been 
active research on channel estimation for RIS-assisted 
communication [1], [2]. Compared with channel esti-
mation techniques under dense scattering propagation 
valid in sub-6 GHz bands, those under sparse scatter-
ing propagation in the mm-wave and sub-THz bands 
are less mature. Existing works for sparse channel es-
timation are specific to different system and channel 
models, thereby hindering their applicability. Thus, it is 
important to combine the categorization of the existing 
research contributions and results with systematizing 
future research directions.

This article provides an overview of channel estima-
tion for RIS-assisted systems, emphasizing mm-wave 
and sub-THz communication. In addition to summarizing 
recent development in sparse channel estimation tech-
niques, in-depth discussions on technical challenges 
and tradeoffs are presented to inspire future research 
in this field.

RIS-Assisted mm-Wave and sub-THz Communication
This section explains an RIS-assisted mm-wave/sub-
THz system model and key features relevant to chan-
nel estimation.

System and Channel Model
For ease of exposition, we consider the basic RIS-assist-
ed communication model employing an RIS to assist the 
transmission between a BS and a single-antenna UE, 
shown in Figure 1. To establish a favorable channel envi-
ronment, the RIS adjusts the phase of the reflected 
signal by using its reflecting elements, which are dynam-
ically programmable through a separate control link. 
The main feature of mm-wave and sub-THz propagation 
channels is sparsity. One of the widely-used channel 
models incorporating the sparse scattering nature of 
channels is the geometry-based channel model [3]–[9], 
in which a sparse channel is parameterized by a set of 
angle-of-arrivals (AoAs), angle-of-departures (AoDs), 
and path gains. For example, seven geometric parame-
ters are used to determine the channel paths among 
the BS, RIS, and UE in Figure 1. The path angles of the 
BS from/to the UE and RIS are denoted as BS-UEi  and 

,BS-RISi  and the path angles of the RIS from/to the BS 
and the UE are denoted as RIS-BS}  and .RIS UE-}  According-
ly, the path gains for the BS-UE, BS-RIS, and RIS-UE are 
given by ,BS-UEa  ,BS-RISb  and ,S-UERIa  respectively. Here, 

Existing works for sparse channel 
estimation are specific to different system 
and channel models, thereby hindering 
their applicability.
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the numbers of paths for the BS-RIS, BS-UE, and RIS-UE 
channels are denoted as ,LBS RIS-  ,LBS UE-  and L ,RIS-UE  respec-
tively. When uniform planar arrays are adopted, each 
path is characterized by azimuth and elevation angles, 
but only the angles in one dimension are considered 
for simplicity.

In time-division duplexing systems, a common ap-
proach to channel estimation is exploiting the channel 
reciprocity that the downlink CSI can be obtained from 
its uplink training. In general, this channel reciprocity is 
not applicable for frequency-division duplexing systems 
that utilize the downlink training and uplink feedback for 
downlink channel estimation. The considered model in 
Figure 1 can be extended to multiuser cases. In the down-
link, the BS can have common pilot symbols shared by 
all UEs, and each UE estimates its downlink CSI similarly 
to the single-user case as in [4]. In the uplink, the UEs 
send orthogonal pilot sequences in time slots [5], [7], 
frequency bands, or codes so that the BS estimates its 
uplink CSIs separately.

During the training period, the uplink or downlink 
pilot signal arrives at the receiver through the direct 
(solid line) and indirect (dashed line) channels, as shown 
in Figure 1. Unlike the direct BS-UE channel that is simi-
lar to a conventional point-to-point mm-wave channel, 
the indirect channel is a two-hop channel, and each of 
the BS-RIS and RIS-UE channels is not directly observ-
able due to the passive operation of the RIS. Thus, it is 
not simple to apply conventional channel estimation 
schemes to indirect channel estimation. Furthermore, 
there exist additional degrees of freedom in designing 
the phase shift wk  of the RIS during the training period 
for enhanced channel estimation.

Individual Versus Cascaded Channel Estimation
Most of the methods for channel estimation in RIS-
assisted communication can be classified into two cate-
gories based on the way to handling the indirect 
BS-RIS-UE channel. One approach is to estimate all indi-
vidual BS-RIS, RIS-UE, and BS-UE channels: we refer to 
this approach as individual channel estimation. In this 
case, the number of angle parameters to be estimated is 
L LBS-RIS BS-UE+  for the BS and L LBS-RIS RIS-UE+  for the RIS. 
This approach enables conventional relay-based data 
precoding techniques to be applied to RIS-assisted com-
munication because all of the CSI is identified. However, 
it is required to use additional training symbols or com-
plicated processing for individual channel estimation 
because the receiver obtains only the end-to-end indi-
rect channel measurement.

The other approach is to estimate the direct channel 
and the indirect cascaded channel instead of estimating 
the individual channels because the knowledge of the 
cascaded channel is sufficient for coherent decoding at 
the receiver and passive beamforming at the RIS. We 
refer to this approach as cascaded channel estimation. 
Note that there are L LBS-RIS RIS-UE  effective cascaded paths 
from the combination of LBS RIS-  and LRIS-UE  paths. With 
transforming physical angles to the spatial frequency 
domain, the cascaded spatial frequency is defined as 
the sum of the BS-RIS and RIS-UE spatial frequencies. 
Since there is a one-to-one mapping between spatial 
frequency and physical angle, we refer to the cascaded 
spatial frequency as the cascaded angle for simplic-
ity. Compared with individual channel estimation, the 
number of cascaded angle parameters to estimate gen-
erally increases since the product L LBS-RIS RIS-UE  is larger 
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Figure 1  An illustration of an RIS-assisted mm-wave and sub-THz communication system.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 15,2022 at 01:18:46 UTC from IEEE Xplore.  Restrictions apply. 



JUNE 2022  |  IEEE VEHICULAR TECHNOLOGY MAGAZINE	  ||| 67 

than the sum in general. This is different from the dense 
channel assumption in which the indirect cascaded 
channel matrix is defined by the element-wise product 
of two BS-RIS and RIS-UE channel matrices, and thus it 
does not increase the number of cascaded channel pa-
rameters to estimate.

Separate Versus Joint Estimation of Direct 
and Indirect Channels
When there exists only one of direct and indirect chan-
nels due to blockage on the other of the two, conven-
tional methods can be applied to channel estimation 
with some modification. When both direct and indirect 
channels are considered, on the other hand, the chan-
nel estimation is not straightforward. One framework 
for channel estimation in this case is to treat the direct 
and indirect channels separately. One approach under 
this framework is a two-stage approach. The BS esti-
mates the direct channel with a conventional sparse 
channel estimation scheme at the first stage with the 
RIS turned off. Then, the indirect channel is estimated 
by turning on the RIS at the second stage, where the 
direct channel’s contribution to the received signal is 
subtracted by the estimate of the direct channel 
obtained at the first stage. In this approach, the periodi-
cal ON–OFF switching of all of the RIS elements can 
introduce a stringent requirement for time synchroniza-
tion, especially for multiuser cases. The second stage 
may suffer from residual interference caused by imper-
fect direct channel estimation.

Although the separate estimation of the direct 
and indirect channels simplifies the overall estimation 
procedure, it is suboptimal due to separate use of all 
information. The other framework for channel estima-
tion is to jointly exploit all channel measurements from 
both direct and indirect channels. This joint estima-
tion of direct and indirect channels has not been fully 
investigated because it is difficult to develop an esti-
mation algorithm based on the superimposed pilot sig-
nals received from both direct and indirect channels. 
However, this joint approach potentially enhances the 
estimation performance by joint use of all training sig-
nals. In addition, the joint approach is practically im-
portant because this enables the deployment of RISs 
fully transparent to wireless users by eliminating the 
need for switching between direct and indirect chan-
nel estimation.

Features of RIS-Assisted Wireless Environment
The low-cost energy-efficient RIS elements enable the 
dense deployment of RISs for enhanced system perfor-
mance. In this regard, the RIS-assisted mm-wave and 
sub-THz communications present several propagation 
features of the radio channel that should be addressed in 
the deployment of RISs.

Line of Sight Versus Non-Line of Sight
The low-cost RIS feature enables dense deployment to 
mitigate high pathloss and blockage encountered at mm-
wave frequencies. The resulting short-range propagation 
is potentially line-of-sight (LoS)-dominant channels. Fig-
ure 2 shows the distance dependence of the LoS link 
probability in an urban microcellular scenario [10]. This 
dense RIS deployment enables UEs to access the BS 
through virtual LoS channels, which is beneficial, espe-
cially for single unicast and broadcast. However, in con-
ventional multiple-input, multiple-output (MIMO) 
systems, an LoS channel is approximated as a low-rank 
matrix [1], [2]. This implies that it is difficult to exploit 
the multiplexing gain of the RIS-assisted MIMO system 
for supporting multistream transmission. Therefore, the 
RIS deployment should be well planned to leverage the 
full potential of MIMO gains.

Near Field Versus Far Field
A massive number of reflecting elements can be imple-
mented at an RIS to achieve the RIS gain. With the 
extended RIS size, the phase difference of the received 
signal across the reflecting elements becomes nonneg-
ligible, i.e., the near-field effect arises [11]. In the near-
field region, the directional characteristics of the radio 
channel are not simply decoupled as plane waves per-
pendicular to the direction of propagation due to 
distance-dependent angular distributions. Moreover, 
for the same definition of the RIS, the broader area 
in the radio coverage becomes the near-field region 
with increasing carrier frequency up to sub-THz. For 
instance, Figure 2 shows the Fraunhofer distance sepa-
rating near- and far-field regions with respect to carrier 
frequency. Therefore, it is necessary to consider the 
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Figure 2 The LoS probability and the Fraunhofer boundary versus 
the transmitter-receiver distance when the size of an antenna array 
is 0.5 m.
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effect of spherical waves in algorithmic and signal pro-
cessing aspects.

Wideband Communication
In wideband communication systems, the delay difference 
of the received signal on a large-scale array of antennas 
can be comparable to a sampling period in time domain. 
Such delay difference makes the system see different spa-
tial directions for the same physical path over subbands, 
referred to as beam squint. Since the effect of beam squint 
increases with the number of antennas or the bandwidth, 
ignoring beam squint can degrade the performance of 
conventional channel estimation or beamforming meth-
ods. From a hardware perspective, the RIS reflecting ele-
ments exhibit frequency-dependent responses [12], which 
is different from the simple assumption for analysis that 
the RIS’s reflection response is frequency-independent. 
The issues mentioned earlier need to be investigated thor-
oughly to enable the RIS-assisted communication systems 
to be practically feasible.

Channel Estimation Methodologies
This section discusses major channel estimation strate-
gies and frameworks for RIS-assisted mm-wave and sub-
THz communication and their pros and cons. Figure 3 
shows the representative methodologies, leveraging the 
sparse nature of mm-wave and sub-THz channels to 
enhance performance.

Beam-Based Technique
In 5G new radio (NR)’s initial access procedure, a BS 
periodically transmits multiple beamformed NR syn-
chronization signals, and a UE selects the best beam to 
establish the connection. This beam-based technique 
can be applied to RIS-assisted wireless systems in which 
the BS, RIS, and UE should find the best beam directions. 
The beam-based technique can be viewed as an approxi-
mate version of channel estimation in a sense that a 
selected beam index reflects the rough information of 
the angle parameter.

A hierarchical beam search method was proposed 
to reduce beam search latency [3]. The idea of this ap-
proach is that the BS and UE perform an exhaustive 
search with wide beams at the initial stage and sub-
sequently refine the selected wide beam with narrow 
beams. In [4], the RIS is treated as an array-of-subar-
rays by dividing the NRIS  RIS elements into Nsubarray  sub-
arrays, each consisting of /N NRIS subarray  elements. This 
RIS structure enables multibeam training in which mul-
tiple reflecting directions are simultaneously probed 
by steering each subarray’s reflecting pattern to a dis-
tinct direction. Since such beam-based techniques are 
usually based on a finite set of predesigned beams, 
it is feasible to feedback the best beam index to the 
transmitter through a finite-bit feedback channel. How-
ever, using the wide beam at each subarray or the ini-
tial stage can constrain the service coverage due to its 
low directivity gain. In addition, an early-stage beam 
misalignment can cause beam mismatch in subsequent 
beam refinement stages.

Sparse Recovery Technique
By considering the sparsity of mm-wave/sub-THz chan-
nels, a two-phase uplink channel estimation method was 
proposed in the multiuser case [5]. In the first phase, the 
uplink channel of one typical UE is estimated in three 
steps: 1) AoA estimation at the BS, 2) cascaded channel 
estimation associated with a particular BS-RIS path, and 
3)  estimation of the remaining L 1BS-RIS -  BS-RIS paths. 
The devised algorithms at steps 1 and 3 are correlation-
based methods exploiting a priori knowledge of the BS 
and RIS array manifold. At step 2, the compressed sens-
ing (CS)-based reconstruction algorithm is applied by 
approximating the system model as a function of the cas-
caded channel only, assuming that the spatial BS-RIS 
paths are asymptotically orthogonal with infinitely many 
BS antennas. Step 2 determines the training overhead for 
the first phase to guarantee to recover the modeled 
sparse channel vector. In the second phase, the cascad-
ed channels of the remaining users are estimated by 
exploiting the estimated BS-RIS CSI in the first phase. 
The employed algorithm at step 2 is an approximation 
method because the off-grid mismatch exists between 
actual continuous angles and discrete angles in the 

The added sensing mode at the RIS enables 
estimating individual indirect channels at 
the RIS and simplifies the channel 
estimation protocol.
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Figure 3  A classification of sparse channel estimation methodologies. 
ML: maximum likelihood.
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dictionary matrix. In [8], a similar CS-based algorithm 
was proposed based on a semipassive RIS configuration 
that allows the RIS to embed a few active sensors capa-
ble of sensing. The added sensing mode at the RIS 
enables estimating individual indirect channels at the 
RIS and simplifies the channel estimation protocol.

To alleviate the off-grid mismatch, a discretization-
free technique based on atomic norm minimization was 
introduced for downlink channel estimation [6]. The 
atomic norm-based approach addresses the grid mis-
match problem well because an atomic set has infinitely 
many atoms with the same dimension of the signals to be 
recovered. At the first stage, two decoupled angle param-
eters (i.e., AoDs for a BS and AoAs for a UE) are estimated 
by formulating the atomic norm minimization as dual 
semidefinite programming (SDP) and root-finding meth-
ods in addition. Given the estimated angles, the transmit/
receive precoders at the second stage are designed to 
approximately decorrelate the array manifold for the BS 
and UE in the received training signal so that the observa-
tion model is dependent only on the cascaded angle and 
gain for an RIS. This approximation is similar to that in 
[5], in which the array manifold becomes asymptotically 
orthogonal with a sufficiently large number of antennas. 
After decorrelation, the cascaded angles for the RIS are 
estimated from the SDP solution as in the first stage.

Array Signal Processing
During the training period, the RIS reflection can be used 
to manipulate the spatiotemporal signature (or subspace) 
of the reflected signal. The RIS reflection coefficients can 
be integrated into the reflected signal as a multiplicative 
factor that enables spatial encoding with the phase 
shifts. Similarly, the temporal signature of the reflected 
signal can be modified by changing the RIS reflection 
coefficient over multiple training symbols. This spatio-
temporal signature of the received signal can be used to 
construct signal subspace to which conventional sub-
space-based methods can be applied for channel estima-
tion. Furthermore, the problem of sparse channel 
estimation can be approached with a general maximum 
likelihood (ML) criterion based on the prior knowledge 
of the array manifold and the training reflection pattern 
[7]. This approach aims to maximize the likelihood itera-
tively to reduce the computational complexity involved 
with joint ML estimation. To be specific, each maximiza-
tion step corresponds to the basis update for the noise 
subspace estimation, which is formulated as a quadratic 
optimization problem. Once the iteration converges, the 
path angles can be estimated from the polynomial roots 
characterizing the noise subspace.

Data-Driven Technique
The channel estimation approaches mentioned earlier 
are in the form of analytical methods optimized for 

specific system models. Devising an algorithm for general 
systems is challenging, but it is possible to obtain approx-
imate solutions based on deep-learning techniques. A 
deep-learning approach can learn correlations in a set of 
data representing an environment of interest. Therefore, 
this approach works on channel estimation problems by 
composing training data sets with the received pilot sig-
nal and estimated CSI. For example, the design of RIS 
reflection pattern with implicit channel estimation was 
proposed under the assumption that a semipassive RIS 
receives pilot symbols from a BS and a UE using a few 
active sensors [8]. Then, a deep neural network on the 
RIS uses the collected data as input to choose a good RIS 
reflection pattern as output. In general, conventional 
deep-learning methods can be applied to uplink training 
because the BS can collect all training data sets from 
associated UEs and run model training in a centralized 
manner. On the other hand, a UE has only its own train-
ing data sets with a limited computing capability in 
downlink training. This constraint can be alleviated by 
allowing multiple UEs to collaborate on model training 
through federated learning.

It is interesting to see the training overhead for all 
of the considered algorithms in the single-user case, as 
summarized in Table 1. The methods in [3], [4] require 
training overhead in the order of the number of BS/RIS/
UE antenna (or reflecting) elements. The methods in [5]–
[7] require relatively small training overhead related to 
the number of channel paths under the assumption that 
the number of channel paths is known or preestimated. 
The lowest overhead is achieved with [8] due to the 
semipassive RIS assumption. The comparison of these 
algorithms in terms of the minimum training overhead 
only is not complete because they are optimized for dif-
ferent system and channel models. For example, in the 
presence of direct link, direct comparison of [5]–[7] may 
not be fair because the methods in [5], [6] require addi-
tional pilot symbols for direct channel estimation.

Performance Evaluation
Figure 4 shows the normalized mean-square error (MSE) 
performance of several methods. With the same number 
of pilot symbols for all methods, the ratio of pilot sym-
bols over two-stage estimation or separate direct and 
indirect channel estimation in [5], [6] is fine-tuned offline 
for a fair comparison. The performance difference of the 
joint estimation framework [7] with or without the direct 

To be specific, each maximization step 
corresponds to the basis update for 
the noise subspace estimation, which 
is formulated as a quadratic 
optimization problem.
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link is relatively small compared with the separate estima-
tion framework [5], [6] because the separate estimation 
framework can be subject to error propagation from imper-
fect direct channel estimation. This numerical study also 
clarifies that there is room for further improvement com-
pared with the Cramer-Rao lower bound (CRB).

Training Signal Design Approaches
Up to now, we went over the channel estimation frame-
works and algorithms. To enhance channel estimation 
performance, it is essential to properly design training 
signals, including the pilot sequence and the RIS reflec-
tion pattern. Unlike dense propagation environments, the 
system model is related to a nonlinear observation 
model containing angle parameters as the exponent term 
of the array manifold. Thus, a common approach based 
on MSE is inapplicable to training signal design because 
the MSE for sparse channel estimation is not derived 
analytically in general [13]. In this section, we briefly 
introduce recent developments in training signal design 
for sparse channel estimation.

Algorithm-Specific Design
One approach to training signal design is to specify the 
channel estimation algorithm and then optimize the 
training signal under specific design criteria, summarized 
in Table 2. The authors in [3], [4] proposed several beam 
broadening approaches so that passive/active beam 
sweeping over the entire spatial horizon is done with low 
beam training overhead. In [4], a wide beamwidth 
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Table 1 A summary of sparse channel estimation approaches for RIS-assisted communication.

Framework Direct Channel Channel Estimation Approach Minimum Training Overhead 

Cascaded 
channel 
estimation 

Separate 
estimation 
of direct 
and indirect 
channels

Unblocked 
and unknown

[3] Three-phase beam search by combin-
ing partial search at RIS and hierar-
chical search at BS and UE 

,log maxN N N6 4 13RIS BS UE+ -^ h" ,  

Blocked or 
known 

[4] Multiple beam sweeping with multi-
directional reflecting beams based on 
an array-of-subarrays RIS architecture 

log
N

N N
1 2

2

subarray

RIS subarray
+c m 

[5] Two-phase estimation based on cor-
relation-based filtering and orthogo-
nal matching pursuit (OMP)-based 
sparse recovery algorithm 

L8 2RIS-UE -  

[6] Two-stage estimation based on dual 
SDP of the atomic norm problem and 
least square estimator 

N N L1st 2nd BS-RIS+  

Individual 
channel 
estimation

[8] Two OMP- and deep-learning-based 
algorithms using a few active RIS 
sensors 

2 

Cascaded 
channel 
estimation 

Joint 
estimation 

Unblocked 
and unknown

[7] Two-stage estimation based on root-
finding methods and iterative ML 
estimation 

,max L L 2RIS-UE BS-UE +" ,  

Blocked or 
known 

NUE: number of antenna elements of the UE [3]; Nsubarray: number of subarrays at the RIS [4]; N1st and N2nd: number of training symbols at the first and second stages 
[6]. The remaining notations in the last column follow those in Figure 1.
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reflection codebook for RIS is generated by using an 
array-of-subarrays. In [4], variable beamwidth codebooks 
are designed using a subset of antenna elements or syn-
thesizing multiple beams, depending on the number of 
available RF chains at the transceiver. In [5], the RIS reflec-
tion pattern is designed by minimizing the mutual coher-
ence (MC) that measures extreme correlations in the 
equivalent dictionary defined as the product of the RIS 
reflection pattern and a dictionary matrix. The MC is an 
analytically tractable metric that is used to access the CS 
recovery capability. This design problem is nonconvex due 
to the constant modulus constraint for the RIS reflection 
pattern, and thus a suboptimal solution is obtained by 
relaxing the constraint. The authors in [6], [7] considered 
specific training signals to facilitate their algorithms. In [6], 
the transmit/receive precoders are generated from random 
matrices for diversified channel sounding and designed as 
an array steering matrix with the previously estimated 
angle. In [7], channel estimation is carried out by switching 
the ON–OFF state of the RIS elements one by one so that a 
priori knowledge of RIS geometry is exploited for channel 
estimation. Such an ON–OFF reflection pattern is modeled 
as some columns of the identity matrix, and thus the 
reflected signal structure becomes equivalent to the array 
manifold of the RIS. In [8], the codebook-based reflection 
pattern was proposed to reflect the practical requirement 
that the RIS phase shifters are controlled with a set of quan-
tized angles. In this approach, the RIS reflection pattern is 
used only for data transmission because the RIS uses the 
integrated active sensors for receiving the training signal 
without passive reflection. Note that the joint design of the 
pilot sequence and RIS reflection pattern along with algo-
rithms is nontrivial [2]. To tackle this challenge, most of 
existing methods, including the methods in this subsection, 
consider the separate design of the training signal by 
means of the known behavior of their chosen algorithms.

Systematic Design
Two CRB-based design approaches were proposed to 
establish algorithm-independent training signal design 
under the assumption that both direct and indirect chan-
nels exist [9]. The CRB is associated with the signal model 
itself, not with any particular estimation algorithm. Thus, 
the resulting training signal design can be considered uni-
versal. In the Bayesian framework, the channel path gains 
and angles are considered as random parameters. The 
Bayesian CRB provides a lower bound on the MSE of any 
Bayesian channel estimator exploiting a priori knowledge 
of the distribution for the random channel parameter. 
Since the Bayesian Fisher information is averaged over 
the parameter distribution, the Bayesian CRB is indepen-
dent of parameter realizations, and the optimal training 
signal minimizing the Bayesian CRB is derived analytical-
ly. In [9], another RIS pattern design approach is proposed 
based on a hybrid parameter assumption to incorporate 

the case that the prior knowledge is not available, espe-
cially for the path angle [9]. In this case, the path angles 
are considered as deterministic parameters, whereas the 
path gains are treated as random nuisance parameters. 
Accordingly, the hybrid CRB is dependent on the realiza-
tion of the path angle, and it is possible to formulate the 
training signal design problem relevant to a set of target 
angles. The resulting optimization is numerically solved by 
the projected gradient method. Under the joint optimiza-
tion of the pilot sequence and RIS reflection pattern, trans-
mission of a constant modulus pilot symbol at a 
single-antenna transmitter is optimal in terms of minimiz-
ing the CRB. However, the joint design of the training signal 
for a multiple-antenna transmitter has not been fully 
addressed, which is an interesting problem for future work.

Performance Evaluation
Direct comparison of training signal designs is not 
straightforward because the design algorithms are based 
on different system/channel assumptions. The CRB is 
used as a performance metric without relying on specific 
channel estimation algorithms because the CRB is associ-
ated with the system model itself. Figure 5 shows the CRB 
on the estimation of path angles for the methods in [3]–
[5], [9]. The design of the equi-spaced K columns of the 
discrete Fourier transform (DFT) matrix shows better 
performance than the consecutive first K columns of the 

Table 2  A summary of training signal design approaches.

Approach Pilot Sequence Design
RIS Reflection 
Pattern Design 

Algorithm-
specific 
design

[3] Hierarchical 
multiresolution 
beams 

DFT-based 
(narrow) beam 
pattern 

[4] Rank-one 
beamforming 
with perfect CSI 

DFT-based (wide) 
beam pattern 

[5] Constant pilot 
symbol 

MC-based 
pattern 

[6] Random training 
matrix and array 
steering matrix 
with estimated CSI

Pseudo-noise 
pattern 

[7] Constant pilot 
symbol 

Partial ON–OFF 
reflection pattern 

Systematic 
design 

[9] Any pilot symbol 
satisfying the 
constant power 
constraint 

Bayesian and 
hybrid CRB-
based pattern

DF T: discrete Fourier transform.

To enhance channel estimation 
performance, it is essential to properly 
design training signals, including the pilot 
sequence and the RIS reflection pattern.
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DFT matrix. When the pilot sequence length is identical 
to the number of RIS elements, the DFT-based reflection 
pattern achieves the best performance, as proven in [14]. 
However, the CRB-based design in [9] is shown to be 
effective as the pilot sequence length K decreases. Inter-
estingly, the design based on MC optimization performs 
close to the CRB-based design.

Conclusions and Future Directions
In this article, we have presented a comprehensive over-
view of channel estimation for RIS-assisted mm-wave/
sub-THz communication, including topics from represen-
tative channel estimation frameworks to RIS training sig-
nal design. As illustrated in Figure 6, several challenges 
and open problems remain to be addressed to accommo-
date diverse use cases of RISs.

First, inventing a CRB-achieving estimator is essential 
for achieving near-optimal performance along with the 
joint design of the pilot sequence and RIS reflection pat-
tern for a general setup, including a multiple-antenna trans-
mitter, wideband transmission, and hybrid beamforming. 
Second, in the multiuser uplink channel estimation, orthog-
onal pilot sequences can be assigned across UEs in a cell 
to avoid interuser interference. When RISs are deployed in 
the cell edge for coverage extension, the interuser interfer-
ence may not vanish due to the reuse of orthogonal pilot 
sequences in multiple cells, known as pilot contamination in 

Near-Field
LoS Multiplexing

Pilot Contamination

Coverage Extension

Wideband
Reflection

Dead Zone Mitigation

Distributed RIS

Low Hardware Cost and
Power Consumption

Aerial Communication SWIPT

Symbiotic Radio
Transmission

Indoor
Communication

Blockage

BS

RIS

UE

Far-Field RIS-Assisted
LoS Multiplexing

Figure 6  An RIS-assisted communication use cases and scenarios in multicell wireless network. SWIPT: simultaneous wireless information 
and power transfer.
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multicell massive MIMO. Ways to handle the pilot contami-
nation need to be investigated for the enhanced channel 
estimation in the multicell case. Next, the ideal assumption 
that the reflecting coefficient per RIS element is controlled 
independently in the continuous domain can facilitate the 
analysis of performance limits and reduce the complexity 
of algorithm design. However, implementing fine-grained 
reflecting elements raises the cost and design complexity. 
Thus, it is necessary to consider these hardware aspects 
for realizing efficient channel estimation algorithms in 
practice. Finally, the effect of spherical waves in the near-
field region can enable spatial multiplexing gain in LoS 
channels [15]. This opens up new possibilities for RISs con-
figuring the LoS MIMO channel rank. The comprehension 
of the involved channel estimation algorithm and signal 
processing for transmission/reception has not been ad-
dressed and remains future research.
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