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Training Signal Design for Sparse Channel
Estimation in Intelligent Reflecting Surface-
Assisted Millimeter-Wave Communication
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Abstract— In this paper, the problem of training signal design
for intelligent reflecting surface (IRS)-assisted millimeter-wave
(mmWave) communication under a sparse channel model is
considered. The problem is approached based on the Cramér-Rao
lower bound (CRB) on the mean-square error (MSE) of chan-
nel estimation. By exploiting the sparse structure of mmWave
channels, the CRB for the channel parameter composed of path
gains and path angles is derived in closed form under Bayesian
and hybrid parameter assumptions. Based on the derivation and
analysis, an IRS reflection pattern design method is proposed
by minimizing the CRB as a function of design variables under
constant modulus constraint on reflection coefficients. Extensions
of the proposed design to a multi-antenna transceiver, a uniform
planar array (UPA)-based IRS, and multi-user case are discussed.
Numerical results validate the effectiveness of the proposed design
method for sparse mmWave channel estimation.

Index Terms— Millimeter wave (mmWave) communication,
intelligent reflecting surface (IRS), signal design, sparse channel
estimation, Cramer-Rao bounds.

I. INTRODUCTION

IRSs have gained much attention as one of the poten-
tial technologies for 6G under various names such as

reconfigurable intelligent surfaces (RISs), reflector-arrays or
intelligent walls. The objective of communication system
design up to now was to design optimal signal waveforms
and encoding/decoding schemes for given wireless channels,
but IRSs have changed the paradigm of this conventional
communication system design. IRSs aim to realize intelligent
wireless channels by controlling the radio propagation model
rather than optimizing transmission-and-reception schemes
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under given channels [2], [3]. An IRS consists of an array
of passive scattering elements and the phase and/or other
characteristics of the signal reflected by each element is con-
trolled. The controllable radio propagation model is beneficial
for wireless communication to improve signal quality and
coverage [4], [5]. In particular, IRSs can be very useful
in mmWave channels since the propagation is directive and
the propagation loss is large in this band. IRSs can provide
diversity paths to improve the link quality to fully harness
the large bandwidth available in this band [6], [7]. In this
regard, the authors in [8] designed a transmit precoder and
the IRS reflection pattern for data transmission in mmWave
channels. For such design of transmit beamformer and IRS
phase shifters, channel state information (CSI) is required
and most previous works assume that perfect CSI of the IRS
and the direct link is available. In practice, however, chan-
nels should be estimated. Channel estimation in IRS-assisted
communication is not simple because an IRS is composed of
passive reflecting elements which cannot send their own pilot
signal and this fact makes the available channel estimation
methods devised for relay channels not directly applicable.
In this paper, we consider mmWave communication, which
can potentially get much benefit from IRSs, and investigate
training signal design for enhanced channel estimation in
IRS-assisted mmWave communication.

A. Related Works and Contributions

We here focus on works on channel estimation in
IRS-assisted communication relevant to our work. One line
of approaches to channel estimation in IRS-assisted systems
is to estimate individual channels, i.e., one from the transmitter
to the IRS and the other from the IRS to the receiver
[9], [10]. Another approach is to estimate the cascaded channel
composed of the transmitter-to-IRS and IRS-to-receiver chan-
nels by treating the cascaded channel as a single effective
channel [11]–[14] (this approach is adopted in this paper).
In [11], the authors proposed an one-by-one channel estimation
protocol in which only a single IRS element is activated while
other elements remain off in each step. In [12], the authors
investigated a cascaded channel framework, exploiting sparse
matrix factorization and matrix completion techniques in
a downlink massive multiple-input multiple-output (MIMO)
system. Under the assumption of a rank-deficient channel,
the pilot symbols and the IRS reflection pattern having on-off
states are generated randomly by using Gaussian and Bernoulli
distributions, respectively. In [13], the authors designed an
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optimal channel estimation scheme based on minimization of
the Cramér-Rao lower bound (CRB) under a dense channel
model and showed that an optimal IRS activation patterns is
given by the columns of the discrete Fourier transform (DFT)
matrix. In [14], a deep learning based method is proposed to
extrapolate the CSI from a partial channel measurement.

The majority of the existing works assume that the number
of training symbols for channel estimation is large enough
compared to the number of (grouped) IRS reflecting ele-
ments [9]–[13]. However, it can be difficult to satisfy this
assumption in practical systems because an IRS typically
adopts a large number of reflecting elements to achieve high
passive beamforming gain. In this paper, two approaches
to CRB-based training signal design are investigated for
enhanced sparse channel estimation. The Bayesian CRB pro-
vides a lower bound on the channel estimation MSE of any
Bayesian channel estimator capable of exploiting the prior
knowledge about the channel parameter [15] in which the
path gains and angles are modeled as random parameters.
Then, the problem of training signal design is formulated
by minimizing the Bayesian CRB that is independent of
parameter realizations. The hybrid CRB determines a lower
bound on the MSE by taking into account the case that
such prior knowledge is not available especially for the path
angle. In this approach, the path gains are modeled as random
parameters whereas the path angles are considered as unknown
deterministic parameters. Thus, the hybrid CRB depends on
specific realization of the path angle and enables training
signal design relevant to a set of fixed target angles. Based
on this result, the performance for sparse channel estimation
can be improved by using the proposed design at the IRS
during the training period. The contributions of this paper are
summarized as follows.

• In the Bayesian parameter case, we derived a condition to
minimize the Bayesian CRB and showed that the Fisher
information “density” for angle estimation is given by a
quadratic form composed of the derivative of the array
response and the IRS reflection pattern matrix square, and
this determines the quality of angle estimation across the
angle domain.

• In the hybrid parameter case, treating the path gains as
random nuisance parameters, we formulated the prob-
lem of optimal IRS reflection pattern matrix design by
minimizing the CRB on angle estimation, and solved
this optimization problem by using the projected gradient
method (PGM) [16], [17].

• Extensions of the proposed design are discussed, includ-
ing a multi-antenna transceiver, a uniform planar array
(UPA)-based IRS, and multi-user case.

• With numerical evaluation, we demonstrated that the pro-
posed design method exploiting channel sparsity yields
noticeable gain in sparse mmWave channels when the
number of training symbols is less than the number of
the reflecting elements in the IRS.

B. Notations

Vectors and matrices are written in boldface with matrices
in capitals. All vectors are column vectors. For a matrix A,

AT , AH , and A† indicate the transpose, Hermitian transpose,
and Moore-Penrose inverse of A, respectively. A � 0 means
that the matrix A is a Hermitian positive semidefinite matrix.
[A]i,j denotes the (i, j)-th element of A. [A]i1:i2,j1:j2 denotes
the submatrix of A given by the intersection of rows i1, . . . , i2
and columns j1, . . . , j2. For a vector a, [a]i denotes the
i-th element of a, and �a� represents vector �2-norm. 0n and
1n are the zero vector of length n and the vector of length n
composed of all one elements, respectively. en(i) denotes the
i-th column vector of the identity matrix of size n× n. In is
the identity matrix of size n × n. diag(A) denotes a vector
of the elements on the diagonal of A and diag(a) denotes a
diagonal matrix whose diagonal is a. E{·} denotes statistical
expectation. a ∼ CN (μ,Σ) means that random vector a is
complex circularly-symmetric Gaussian distributed with mean
vector μ and covariance matrix Σ. a ∼ Unif[a, b] means
that the elements of a are randomly and uniformly distributed
over the interval [a, b]. C denotes the set of complex numbers.
The symbol � and ⊗ denote the Hadamard product and the
Kronecker product, respectively. Re(·) Im(·) denote the real
part and the imaginary part, respectively. tr(·) denotes the trace
operator. vec(·) denotes the vectorization to stack the columns
of the input matrix. ι :=

√−1.

II. SYSTEM MODEL

Consider an IRS system composed of a transmitter, an IRS,
and a receiver, as shown in Fig. 1. We assume that the
transmitter and the receiver have a single antenna and the
IRS has a uniform linear array (ULA) of N passive reflect-
ing elements. In Fig. 1, there exists a direct channel
path from the transmitter to the receiver, where the direct-
path channel gain is denoted by α0 ∈ C, and there exist
channel links between the transmitter and the IRS h(t) =
[h(t)

1 , . . . , h
(t)
N ]T ∈ CN and between the IRS and the receiver

h(r) = [h(r)
1 , . . . , h

(r)
N ]T ∈ CN . The considered IRS system

operates in the mmWave band and hence adopt a geometry-
based sparse channel model relevant to mmWave commu-
nication [7], [8], [18]–[20]. Thus, the channel vectors of
h(t) and h(r) are modelled as h(t) =

�L(t)

i=1 α
(t)
i uN (ψ(t)

i )
and h(r) =

�L(r)

j=1 α
(r)
j uN (ψ(r)

j ), where α
(t)
i and ψ

(t)
i are

the gain and angle-of-arrival (AoA) of the i-th path of the
channel from the transmitter to the IRS, α(r)

j and ψ
(r)
j are

the gain and angle-of-departure (AoD) of the j-th path of the
channel from the IRS to the receiver, L(t) and L(r) are the
numbers of multi-paths of h(t) and h(r), respectively, and
uN (ψ) is the array response vector of an N -element ULA,
given by uN (ψ) =

�
1, eι2π

d
λψ, eι2π

d
λ 2ψ, . . . , eι2π

d
λ (N−1)ψ

�T
.

Here, ψ is the normalized path angle given by ψ = sin(φ),
d is the spacing between adjacent reflecting elements at the
IRS, λ is the carrier wavelength, and φ ∈ [−π/2, π/2] is
the unnormalized physical path angle. In particular, we have
ψ ∈ [−1, 1] with critical sampling d = λ

2 .1

We consider training-based channel estimation with a train-
ing period composed of K symbols in the beginning of each

1With d = λ
2

, the visible region equals to one Nyquist interval ω :=

2π d
λ
ψ ∈ [−π,π] covering the entire circle [21].
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Fig. 1. The considered IRS-assisted point-to-point communication link.

channel coherence interval. At the k-th symbol time during
the training period (i.e., 1 ≤ k ≤ K), the transmitter sends a
training symbol sk with |sk|2 = ρ, and theN passive reflecting
elements at the IRS reflect the incoming signal from the trans-
mitter with a complex gain vector wk = [w1k, . . . , wNk]T

with |wnk| =
√
γ for some γ ∈ (0, 1]. Then, the received

signal yk at the receiver at the k-th symbol time is given
by [7], [8], [20]

yk =
�
α0 +

N�
n=1

w∗
nkh

(t)
n h(r)

n

�
sk + nk

=
�
α0 + wH

k

�
h(t) � h(r)

		
sk + nk, (1)

where nk ∼ CN (0, σ2
n) is circularly-symmetric complex

Gaussian noise. The IRS-assisted cascaded channel vector h
from the transmitter to the receiver is defined as

h := h(t) � h(r) =
L(t)�
i=1

L(r)�
j=1

α
(t)
i α

(r)
j uN

�
ψ

(t)
i + ψ

(r)
j

	

=
L�
�=1

α�uN (ψ�) = Uψ[α1, . . . , αL]T , (2)

where L = L(t)L(r) denotes the number of paths in
the cascaded channel h, α� (= α

(t)
i α

(r)
j ) and ψ� (=

ψ
(t)
i + ψ

(r)
j ) denote the effective gain and angle of the

�-th path of the cascaded channel h, respectively, and
Uψ = [uN (ψ1), . . . ,uN (ψL)] ∈ CN×L. Then, based on (1),
the received signal during the entire training period can be
written in vector form as

y = S
�
1K WH

�
 �� 
=:�WH

�
α0

h

�
+ n

= S�WH

�
1 0TL

0N Uψ

�
α+ n, (3)

where y = [y1, y2, . . . , yK ]T , n = [n1, n2, . . . , nK ]T , S =
diag(s1, . . . , sK), W = [w1, . . . ,wK ] ∈ CN×K , and
α = [α0, α1, . . . , αL]T . We will refer to W as the reflection
pattern matrix used at the IRS during the training period.

The goal of channel estimation is to obtain the channel
parameters α and ψ = [ψ1, . . . , ψL]T based on the received
signal y. Once the channel h is estimated during the training
period, some control information can be sent from the receiver

to the IRS to match the reflection coefficients {wij} to h in
order to maximize the data rate or other desired performance
measure based on the received signal model (1) during the
data transmission period.

Remark 1: Due to the existence of the direct path, the sig-
nal model (3) incorporating the channel sparsity in the
mmWave band has a special structure. It is not a sim-
ple linear model in terms of the unknown parameters
{α0, α1, . . . , αL, ψ1, . . . , ψL} or a signal model associated
with simple AoA estimation. It is a mixed nonlinear model
in terms of the channel path-gain parameters α0, α1, . . . , αL
and the path-angle parameters ψ1, . . . , ψL.

For the rest of this paper, we consider the problem of
optimal training signal design under the signal model (3).
Here, we have two design variables S and W, where S =
diag(s1, . . . , sK) is the training symbol sequence at the trans-
mitter and W is the IRS reflection pattern matrix during
the training period. Then, the goal is to design the training
sequence S and the IRS reflection pattern matrix W so that
channel estimation based on the designed S and W yield best
performance under a reasonable criterion.

Remark 2: Previous IRS reflection pattern designs under
sparse scattering propagation include sparse random vec-
tor [12] for sparse representation of the indirect channel, any
fixed unit-modulus vector [20] by approximating the sparse
channel with virtual channel representation, and the IRS array
manifold vectors [22] to maximize passive beamforming gain.
Note that for sparse channel estimation, the error covariance
matrix is not derived analytically in general [23] and the
numerically obtained mean square error (MSE) is algorithm-
specific. Therefore, it is not straightforward to establish the
MSE-based training signal design.

Unlike the previous works in which the training signal is
designed to facilitate an associated channel estimation algo-
rithm, in this paper we investigate a systematic way to design
training signal that is independent of any particular algorithm
by employing the CRB as the optimality criterion. For the
given parameter θ = [αT ,ψT ]T , where α = [α0, α1, . . . , αL]
and ψ = [ψ1, . . . , ψL], the CRB is analyzed as a function of
training signal [24]:

Ey|θ{(θ − θ̂(y))(θ − θ̂(y))H} � J(θ)−1, (4)

where θ̂(y) is any unbiased estimator of θ and J(θ) is
the Fisher information matrix (FIM) given by the covariance
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matrix of the score function ∂ ln p(y|θ)
∂θ , i.e., J(θ) =

Ey|θ
��∂ ln p(y|θ)

∂θ

��∂ ln p(y|θ)
∂θ

�H�
. Then, the training signal is

optimized by minimizing the CRB-based cost function, which
is discussed in details in the following sections.

III. ANALYSIS FROM BAYESIAN CRB

The derivation of FIM and corresponding CRB depends
on the assumption on the parameter θ = [αT ,ψT ]T .
In this section, to gain insights into the IRS reflection pattern
design with analytical tractability in the sparse channel case,
we consider the Bayesian approach that assumes a prior
distribution on θ and considers the MSE performance aver-
aged over the prior distribution on θ. The Bayesian CRB
is obtained by taking expectation Eθ over p(θ) on both
sides of (4) as

Eθ{Ey|θ{(θ − θ̂(y))(θ − θ̂(y))H}}
(a)

� Eθ{J(θ)−1}
(b)

� (Eθ{J(θ)})−1
, (5)

where J(θ) is defined in (4) and Step (b) is valid due
to Jensen’s inequality on positive-definite matrix inverse.
Here, it is not simple to derive Eθ{J(θ)−1} analytically
since the inverse of J(θ) may not be simplified due
to possible non-zero off-diagonal elements depending on
the realization of θ. Instead, the inverse of the averaged
FIM (i.e., Bayesian FIM) Eθ{J(θ)} provides a tractable
lower bound on the channel estimation MSE averaged over
both y and θ.

A. Derivation of Bayesian CRB

In high-frequency channels such as mmWave channels,
the gain and angle of a path are typically uncorrelated
[25]–[27]. Hence, we assume that α and ψ are statis-
tically independent with marginal distributions p(α) and
p(ψ), respectively. From the signal model (3) with additive
Gaussian noise, the joint probability density function (pdf) is
written as

p(y,θ) = p(y,α,ψ) = p(y|α,ψ)p(α)p(ψ)

=
�
πσ2

n

�−K
exp
�−�y − m�2

/σ2
n

�
p(α)p(ψ), (6)

where m := S�WH
�
α0,hT

�T
, as seen in (3). Note that α is

complex-valued whereas ψ is real-valued. Hence, it is conve-
nient to consider the real-valued version θ̃ of the parameter

vector θ, defined as θ̃ :=
�
Re{αT }, Im{αT },ψT

�T
. By using

the property of the mapping x 
→
�

Re{x}
Im{x}

�
for a complex

vector x, the Bayesian CRB for θ̃ is given by [28]

Ey,θ

��
θ̃ − g(y)

��
θ̃ − g(y)

�H� � J−1

θ̃θ̃
, (7)

for any unbiased channel estimator g(y) for θ̃,
where Jθ̃θ̃ is the real-valued-version Bayesian FIM
obtained by taking expectation over y and θ [28]:

Jθ̃θ̃ = M̃
�

Jαα Jαα∗ Jαψ
Jα∗α Jα∗α∗ Jα∗ψ
Jψα Jψα∗ Jψψ

�
M̃H , where

M̃ =
�

M 02(L+1)0TL
0L0T2(L+1) IL

�
,

M =
1
2

�
IL+1 IL+1

−ιIL+1 ιIL+1

�
, (8)

Jαα = −Ey,θ

� ∂

∂α∗
�∂ ln p(y,α,ψ)

∂α∗
	H�

,

Jαα∗ = −Ey,θ

� ∂

∂α∗
�∂ ln p(y,α,ψ)

∂α

	H�
, (9)

and Jαψ , Jα∗ψ, Jψα, Jψα∗ and Jψψ are similarly defined
by considering that ψ is a real-valued vector. Here, Ey,θ

denotes the expectation with respect to the joint pdf p(y,θ) =
p(y,α,ψ), M in (8) is the complex-to-real conversion
matrix [28], [29], and ∂

∂α and ∂
∂α∗ in (9) are the Wirtinger

complex derivative [30]. Note that the Bayesian FIM does
not depend on the parameters α and ψ, and the parameter
subscript in Jθ̃θ̃ is for matrix partition purpose.

To enable derivation of Bayesian CRB with still incorporat-
ing many meaningful distributions [31], [32], we assume that
the direct path gain α0 has non-zero mean μ0, the reflected
path gains α�, � = 1, . . . , L have zero mean,2 and all the path
gains α�, � = 0, 1, . . . , L have the same finite second-order
central moment σ2, and that the path angle is uniformly dis-
tributed over [Δ1,Δ2] ⊂ [−1, 1], i.e., ψ�

i.i.d.∼ Unif[Δ1,Δ2],
� = 1, . . . , L. Under this prior assumption, the Bayesian CRB
is given by the following theorem.

Theorem 1: For the system model in (3) with E{α} =
μ = [μ0,0TL]T , E{(α − μ)(α − μ)H} = σ2IL+1, and

ψ�
i.i.d.∼ Unif[Δ1,Δ2], � = 1, . . . , L, the Bayesian CRB

for any unbiased estimator of θ̃ is given by tr
�
J−1

θ̃θ̃

�
, where

Jθ̃θ̃ = Jθ̃θ̃,D+Jθ̃θ̃,P . The likelihood part Jθ̃θ̃,D and the prior
part Jθ̃θ̃,P are respectively given by

Jθ̃θ̃,D = M̃

⎡⎣ Jαα,D 0L+10TL+1 0L+10TL
0L+10TL+1 J∗

αα,D 0L+10TL
0L0TL+1 0L0TL+1 Jψψ,D

⎤⎦ M̃H and

Jθ̃θ̃,P = M̃

⎡⎣ Jαα,P 0L+10TL+1 0L+10TL
0L+10TL+1 Jα∗α∗,P 0L+10TL
0L0TL+1 0L0TL+1 Jψψ,P

⎤⎦ M̃H ,

where the corresponding submatrices are in (10)-(14), shown
at the bottom of the next page.

Proof: See Appendix A.
Note that the Bayesian FIM in Theorem 1 is a function

of W and ρ only because the terms involving S except the
quadratic term SHS vanish in the derivation of the FIM due
to taking derivative of the score function and expectation over
the channel parameters, as seen in the proof of Theorem 1 in
Appendix, but the quadratic term SHS = ρIK under the
constant-modulus training symbol assumption. This means
that there is no loss in terms of CRB performance with
any training symbol sequence satisfying the constant-modulus
symbol constraint. Thus, we assume sk =

√
ρ, 1 ≤ k ≤ K

for ease of exposition.

2By treating the non-zero first-order moment of the path gain as a LoS
component [33], [34], this can be estimated based on the sliding window
versions of the average algorithms.
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B. Analysis Under the Least Information Prior

Solving the optimization problem for the reflection pattern
matrix by minimizing the Bayesian CRB in Theorem 1 is not
easy in general cases. In this subsection, we consider the least
information prior case under the assumption of Theorem 1
and investigate the reflection pattern matrix design in this case.
To this end, we assume that the direct path gain is modelled by
Rician fading (i.e., α0 ∼ CN (μ0, σ

2)), the indirect path gain
is modelled by Rayleigh fading (i.e., α� ∼ CN (0, σ2) for � =
1, . . . , L),3 and the path angle is uniformly distributed over
the entire angle domain (i.e., ψ� ∼ Unif[−1, 1], � = 1, . . . , L).
These prior distributions of α� and ψ� have maximum entropy
under the finite second moment and finite support assumptions,
respectively. Based on this prior assumption, the Bayesian FIM
is given by the following corollary.

Corollary 1: For the signal model (3) with α ∼
CN (μ, σ2IL+1), μ = [μ0,0TL]T , ψ�

i.i.d.∼ Unif[−1, 1], � =
1, . . . , L, and d = λ

2 , the diagonal submatrices of Jθ̃θ̃,D and
Jθ̃θ̃,P in Theorem 1 are given by

Jαα,D =
ρ

σ2
n

�
K w̄∗

11
T
L

w̄11L tr(Q)IL + [Q]1,1(1L1TL − IL)

�
,

(15)

Jψψ,D = (2ρσ2/σ2
n)

�
π2

N−1�
m=1

m2 [Q]m+1,m+1

�
IL,

Jαα,P = Jα∗α∗,P = (1/σ2)IL+1, and Jψψ,P = 0L0TL.
(16)

Proof: See Appendix B.
Due to the block diagonal structure of Jθ̃θ̃ , the inverse

of the Bayesian FIM is given by (17), shown at the bottom
of the page, where Jαα = Jαα,D + Jαα,P , Jψψ =
Jψψ,D + Jψψ,P = Jψψ,D, and we used the fact that the
inverse of M in (8) is M−1 = 2MH .

3A multiplicative factor including the path-loss (PL) can be incorporated
into the path gain part, e.g., α� ∼ CN (0, σ210−0.1PL) [35].

Now, let us consider the IRS reflection pattern design that
minimizes the Bayesian CRB given by the trace of (17) while
maintaining the constant modulus constraint on the reflection
pattern matrix |[W]p,q| =

√
γ for all p, q.

Lemma 1: The inverse of the matrix Jαα = Jαα,D +
Jαα,P of size (L+ 1)× (L+ 1) in (17) is eigen-decomposed
as

J−1
αα =

σ2
n

ρ
B× diag

�
K � +

τ − κ

2
,K � +

τ + κ

2
,

(K � + τ − L[Q]1,1) 1TL−1

	−1

× BH , (18)

where K � = K + σ2
n

ρσ2 , B is a unitary matrix defined in (57)
in Appendix C,

τ = tr(Q) + (L− 1)[Q]1,1 −K, and

κ =
�
τ2 + 4L|w̄1|2. (19)

Here, Q = WWH as defined in (13) and w̄1 =�K
k=1 [W]1,k.
Proof: See Appendix C.
Proposition 1: The IRS reflection pattern W minimiz-

ing the Bayesian CRB from Corollary 1 satisfies
�K

k=1

[W]1,k = 0.
Proof: By Lemma 1, the Bayesian CRB from Corollary 1

can be rewritten as

tr
�
J−1

θ̃θ̃

� (a)
= tr

⎛⎜⎝
⎡⎢⎣ 2J−1

αα 0L+10TL+1 0L+10TL
0L+10TL+1 2J∗−1

αα 0L+10TL
0L0TL+1 0L0TL+1 J−1

ψψ

⎤⎥⎦
⎞⎟⎠

(20)
(b)
= 4

σ2
n

ρ

�
1

K � + τ−κ
2

+
1

K � + τ+κ
2

+
L− 1

K � + τ − L[Q]1,1

�
+

σ2
n

ρσ2

L

2π2
�N−1

m=1m
2[Q]m+1,m+1

Jαα,D =
ρ

σ2
n

�
K (ϕHψ w̄)∗1TL

(ϕHψ w̄)1L
��N−1

m=0

�N−1
n=0 ϕψ

�
2π dλ(n−m)

�
[Q]m+1,n+1

�
IL +ϕHψ Qϕψ(1L1TL − IL)

�
, (10)

Jψψ,D =
2ρσ2

σ2
n

��
2π
d

λ

	2 N−1�
m=1

N−1�
n=1

mnϕψ

�
2π
d

λ
(n−m)

	
[Q]m+1,n+1

�
IL, (11)

Jαα,P = −E

(
∂

∂α∗
�∂ ln p(θ)

∂α∗
	H)

, Jα∗α∗,P = −E

(
∂

∂α

�∂ ln p(θ)
∂α

	H)
, Jψψ,P = 0L0TL, (12)

w̄ = [w̄1, . . . , w̄N ]T =
K�
k=1

wk, Q = WWH , and (13)

ϕψ =

⎡⎢⎣
1

ϕψ(2π dλ )
...

ϕψ(2π dλ (N−1))

⎤⎥⎦ with ϕψ

�
2π
d

λ
n
	

=
eι2π

d
λn

(Δ2+Δ1)
2

π dλn(Δ2 − Δ1)
sin
�

2π
d

λ
n

�
Δ2 − Δ1

2

��
. (14)

J−1

θ̃θ̃
= M̃

�
2I2(L+1)

IL

�

 �� 

=M̃−H

⎡⎢⎣ J−1
αα 0L+10TL+1 0L+10TL

0L+10TL+1 J∗−1
αα 0L+10TL

0L0TL+1 0L0TL+1 J−1
ψψ

⎤⎥⎦� 2I2(L+1)

IL

�
M̃H
 �� 

=M̃−1

, (17)
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(c)
= 4

σ2
n

ρ

�
1

K �+ τ−κ
2

+
1

K �+ τ+κ
2

+
L− 1

K �+τ − LKγ

�
+

σ2
n

ρσ2

3L
π2Kγ(N − 1)N(2N − 1)

, (21)

where Step (a) is computation of (17) by using tr(ABC) =
tr(BCA) and MHM = diag(1

2I2(L+1), IL) due to M−1 =
2MH , for Step (b) we use the eigenvalues of Jαα in
Lemma 1 and the result of Jψψ in (16) from Corollary 1,
and for Step (c) we use the constant modulus constraint
on W, i.e., [Q]m,m =

�K
k=1 |[W]m,k|2 = Kγ, ∀m and

the series sum
�N−1

m=1m
2 = (N − 1)N(2N − 1)/6. Hence,

the dependence of tr
�
J−1

θ̃θ̃

�
in (21) on W is only through τ

and κ. As seen in (19), furthermore, the dependence of τ on
Q disappears due to the constant modulus constraint on W
because tr(Q) = NKγ and [Q]1,1 = Kγ for all W satisfying
the constant modulus constraint. Therefore, the remaining
dependence of the CRB on W is only through κ, which is
a function of |w̄1| only, as seen in (19). The derivative of the
CRB tr

�
J−1

θ̃θ̃

�
in (21) (as a function of κ) with respect to (w.r.t.)

κ is given by d
dκ tr
�
J−1

θ̃θ̃

�
= σ2

n

ρ

2(2K�+τ)κ
(K+(τ−κ)/2)2(K+(τ+κ)/2)2

≥ 0.
Hence, the CRB tr

�
J−1

θ̃θ̃

�
in (21) is a monotone increasing

function of κ. Therefore, the minimum CRB
�
J−1

θ̃θ̃

�
is attained

at the smallest value of κ and in turn the smallest κ is obtained
with |w̄1| = 0 from (19). �

Note that in this case, tr(J−1
ψψ) is given by a constant due

to the symmetric prior assumption ψ�
i.i.d.∼ Unif[−1, 1] as

seen in (20) - (21). Hence, the overall CRB reduction by
the condition in Proposition 1 is by improving the estimation
performance for α. The received signal (3) during the training
period (without noise term) can be rewritten as

y =
√
ρ
�
α01K + WHh

�
=

√
ρ

�
α01K +

� L�
�=1

α�

�

[W]H1,1:K + [W]H2:N,1:K [Uψ]2:N,1:L

* α1

...
αL

+�
, (22)

since the first element of the ULA response vector uN (ψ�)
is one. Due to the condition w̄1 =

�K
k=1 [W]1,k = 0 of

Proposition 1, the inner product between the first column
α01K and the second column (

�L
�=1 α�)[W]H1,1:K in the right-

hand side (RHS) of (22) are orthogonal since 1TK [W]H1:K,1 =�K
k=1 [W]∗1,k = w̄∗

1 = 0. Hence, we have reduced inter-
ference from {α1, . . . , αL} to α0, which can facilitate the
estimation of α.

1) Quantitative Analysis: The sum condition
�K
k=1

[W]1,k = 0 in Proposition 1 can be applied to previous
designs including the DFT-based reflection patterns [13], [36].
This can be done by adjusting the first row elements of
the reflection patterns so that the sum condition is satis-
fied. For example, such a W with N = 8 and K = 4
is given by W = [u8(−1 + 1

8 ),u8(−1 + 3
8 ),u8(−1 +

5
8 ),u8(−1 + 7

N )]diag(1, ej
2π
4 , ej2

2π
4 , ej3

2π
4 ), where this phase

shifted W satisfies both the constant-modulus constraint
and the sum condition

�K
k=1 [W]1,k = 0. Fig. 2(a)

shows the Bayesian CRB performance of several IRS

reflection patterns for the estimation of the overall parameter
α0, α1, . . . , αL, ψ1, . . . , ψL when the number of IRS elements
N = 8, the number of training symbols K = 4, and the
number of paths L = 2. Here, the signal-to-noise ratio (SNR)
is defined as SNR = ρ/σ2

n. The on-off method switching the
on-off states of the reflecting elements [11] shows degraded
performance over the entire range of SNR. This is because
the on-off switching method does not exploit all reflecting
elements simultaneously for channel estimation. The orthogo-
nal reflection patterns including the first K columns [13], [36]
and equi-spaced K columns of the N ×N DFT matrix yield
improved performance compared to the on-off method. We
implemented the condition of Proposition 1 on the equi-spaced
K columns on the DFT matrix by progressively shifting the
phases of the K column vectors by ej

2π
K (k−1), k = 1, 2, . . . ,K

so that
�K
k=1 [W]1,k = 0 as already mentioned in the above

example (note that the first row of a DFT matrix is an all-
one vector). Indeed, the phase-shifted equi-spaced K columns
of the DFT matrix shows further performance improvement,
as seen in Fig. 2(a).

Fig. 2(b) shows the quantity 2 ∂
∂ψuHN (ψ)Q ∂

∂ψuN (ψ) as
a function of ψ for the IRS reflection patterns considered
in Fig. 2(a). Note that Jψψ,D in (16) whose inverse constitutes
the lower diagonal block of tr

�
J−1

θ̃θ̃

�
in (20) determining

the angle estimation performance is given by Jψψ,D =
ρσ2

σ2
n

Eψ{2 ∂
∂ψuHN (ψ)Q ∂

∂ψuN (ψ)}IL, as seen in the proof of

Theorem 1 in Appendix. Hence, 2 ∂
∂ψuHN (ψ)Q ∂

∂ψuN (ψ)
shows the density of Fisher information over the angle domain
before taking the expectation over ψ� ∼ Unif[−1, 1]. High
Fisher information density at a certain angle means high
estimation performance (i.e., low estimation error) at that
angle. It is seen that the Fisher information density is angle-
dependent for the considered IRS reflection patterns. The first
4 columns of the 8×8 DFT matrix has high Fisher information
density for ψ ∈ [−1, 0] and low Fisher information density for
ψ ∈ [0, 1]. This is because the first 4 columns are equivalent to
the orthogonal steering vectors for the look-angles in [−1, 0].
On the other hand, the equi-spaced 4 columns of the 8 × 8
DFT matrix spreads out Fisher information over the entire
angle range with some ripples. The phase-shifted equi-spaced
DFT columns satisfying the condition in Proposition 1 has
the same value of the integrated Fisher information as the
equi-spaced DFT columns. Note that all the reflection patterns
other than the on-off method satisfy the constant modulus con-
straint and they have the same integrated Fisher information
Eψ{2 ∂

∂ψuHN (ψ)Q ∂
∂ψuN (ψ)} with ψ� ∼ Unif[−1, 1]. At a par-

ticular path angle, however, the angle estimation performance
can be different for each reflection pattern because the Fisher
information density 2 ∂

∂ψuHN (ψ)Q ∂
∂ψuN (ψ) varies over the

angle domain and has distinct peak-to-valley height, as seen
in Fig. 2(b). This suggests that we can exploit the Fisher
information density itself rather than its integrated value when
we focus on the angle estimation performance considering the
desired performance distribution over the angle domain. This
will be investigated in the next section.

Remark 3: In the case of the indirect path gain with non-
zero mean, the block diagonal structure of the FIM (i.e., Jθ̃θ̃,D
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Fig. 2. Bayesian CRB performance: N = 8, K = 4, and L = 2: (a) Bayesian CRB for the overall parameter θ = [αT ,ψT ]T and (b) Density of Jψψ ,D
over the angle domain (the same legend as in (a)).

in Theorem 1) does not hold due to a possible non-zero off-
diagonal submatrix. In particular, the off-diagonal submatrix
Jαψ,D is expressed as a function of the mean of the indirect
path gain. Consequently, minimizing the CRB as a function
of training signal is very difficult because the computation of
the CRB requires the inverse of the whole FIM matrix Jθ̃θ̃,D
which is not easy to simplify for tractable optimization.

IV. HYBRID CRB-BASED REFLECTION PATTERN DESIGN

To take advantage of the Fisher information density before
taking expectation, we need deterministic parameter assump-
tion. However, the full deterministic assumption for both path
gains and path angles makes the derivation of CRB very
difficult. We circumvent this difficulty by adopting a hybrid
parameter assumption. Since in sparse mmWave channels,
the estimation of path angles is crucial to collect the propa-
gation power spread in the space with beamforming and yield
high SNR [37], [38], we now take the path angle parameter
ψ as a deterministic parameter (hence the expectation over ψ
is not taken), whereas we treat the path gain parameter α as
a random nuisance parameter.

A. Derivation of Hybrid CRB

The FIM for the estimation of the random vector α and the
deterministic vector ψ can be obtained by averaging y and α
out from the covariance matrix of the score function condi-
tioned on ψ. Then, the derived CRB becomes a function of
the path-angle parameter ψ and thus yields a lower bound on
the MSE of estimation for given true underlying parameter ψ.
From the system model (3), the conditional pdf of y and α
given ψ is given by

p(y,α;ψ) = p(y|α;ψ)p(α)

=
�
πσ2

n

�−K
exp
�−�y − m�2

/σ2
n

�
p(α), (23)

where m =
√
ρ�WH

�
α0,hT

�T
and h = Uψ[α1, . . . , αL]T .

The CRB in this hybrid case is provided in the following
theorem.

Theorem 2: Under the system model (3) with random path-
gain parameter α ∼ CN (μ, σ2IL+1), μ = [μ0,0TL]T , and
deterministic path-angle parameter ψ, the hybrid CRB for any

unbiased estimator of the overall parameter θ = [αT ,ψT ]T

is given by tr
�
J̆−1

θ̃θ̃

�
= tr
��

J̆θ̃θ̃,D + J̆θ̃θ̃,P
�−1�

, where J̆θ̃θ̃ is
the hybrid FIM for which the path gain is averaged out but
the path angle is given. The two matrices J̆θ̃θ̃,D and J̆θ̃θ̃,P
are given by

J̆θ̃θ̃,D = M̃

⎡⎢⎣ J̆αα,D 0L+10TL+1 0L+10TL
0L+10TL+1 J̆∗

αα,D 0L+10TL
0L0TL+1 0L0TL+1 J̆ψψ,D

⎤⎥⎦ M̃H and

J̆θ̃θ̃,P = Jθ̃θ̃,P ,

where

J̆αα,D =
ρ

σ2
n

�
K w̄HUψ

UH
ψ w̄ UH

ψQUψ

�
;

[J̆ψψ,D]p,q =

,
2 ρσ

2

σ2
n

∂uHN (ψp)
∂ψp

Q∂uN (ψq)
∂ψq

, if p = q

0, if p �= q;
(24)

Jθ̃θ̃,P , w̄, and Q are given in Theorem 1; and uN (·) is the
ULA response vector.

Proof: See Appendix D.
Note that in the hybrid case, the p-th diagonal element of

J̆ψψ,D is nothing but the Fisher information density at ψp,
mentioned in the previous section. Since Jθ̃θ̃,P (= J̆θ̃θ̃,P )
is block-diagonal, as seen in Theorem 1, with its constituent
matrices Jαα,P = 1

σ2 IL+1 and Jψψ,P = 0L0TL , the hybrid
FIM J̆θ̃θ̃ has a block-diagonal form and we have separate
sub-FIMs for the path gains and the path angles, as seen in
Theorem 2. Thus, the MSE lower bound for the estimation
of the path-angle parameter ψ is determined by the inverse
of the lower diagonal block J̆ψψ,D due to J̆ψψ,P = 0L0TL ,
whereas the MSE lower bound for the estimation of the path-
gain parameter α is determined by the upper diagonal element
J̆αα = J̆αα,D + J̆αα,P . Both of the FIM submatrices are
functions of the design variable Q (= WWH) and the true
angle parameter ψ. Focusing on the path-angle parameter
while treating the path-gain parameter as a nuisance parameter,
we can optimize the IRS reflection matrix W in order to yield
the best angle-estimation CRB based on J̆ψψ,D. (Note that
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in Theorem 2, the lower diagonal block of M̃ multiplied to
J̆ψψ,D is the identity matrix, as seen in (8).)

B. Hybrid CRB-Based Reflection Pattern

As seen in Theorem 2, the FIM submatrix J̆ψψ,D deter-
mining the performance of path angle estimation is a function
of the design variable Q (= WWH) and the true underlying
path angle ψ. A key point to note is that the CRB tr

�
J̆−1
ψψ,D

�
determines the estimation performance when the true path
angles are ψ = [ψ1, . . . , ψL]T . Hence, our design approach
with the hybrid CRB is that we first design a set of targeted
look-angles and then optimize W so that W yields best
estimation performance when the true path angles are at the
targeted look-angles. Here, we can exploit some side informa-
tion about the path angles if any, e.g., its support information
ψ� ∈ [Δ1,Δ2], ∀�. With such information, we design the set
of targeted look-angles as ξLT ,� ∈

�
Δ1 + Δ2−Δ1

LT
(�−1) | � =

1, . . . , LT
�

, i.e., the targeted look-angles are evenly spaced
over the entire angle range [Δ1,Δ2] with LT angles. Then,
the optimization problem is formulated as

min
W

tr
�
J̆−1
ψψ,D

---ψ = ξ � [ξLT ,1, . . . , ξLT ,LT ]T
	

(25)

s.t. |[W]p,q| =
√
γ, ∀p, q. (26)

Remark 4: Using the Cauchy-Schwartz inequality��L
�=1

√
λ�

1√
λ�

�2 ≤ �L
�=1 λ� · �L

�=1
1
λ�

, where

λ� = 2 ρσ
2

σ2
n

∂uHN (ψ�)
∂ψ�

Q∂uN(ψ�)
∂ψ�

, we have the following

inequality regarding the trace of the inverse of J̆ψψ,D:
tr
�
J̆−1
ψψ,D

� ≥ L2
�
tr
�
J̆ψψ,D

��−1
for any true ψ. The equality

is achieved if and only if λ1 = . . . = λL. This condition
can be achieved by Q = WWH = KγIN if K ≥ N .
That is, with Q = KγIN , λ� = 2Kγ ρσ

2

σ2
n

∂uHN (ψ�)
∂ψ�

∂uN (ψ�)
∂ψ�

=

2Kγ ρσ
2

σ2
n

(2π dλ)2
�N−1
m=1m

2 does not depend on the index �.

(Please see in (41) in Appendix A regarding ∂uN (ψ�)
∂ψ�

.) So,
we can see the optimality of Q = KγIN obtained in the
previous work [13], [36] in the case of K ≥ N in this sense
too.

Since our main focus in this paper is sparse mmWave
channels, the situation is L < K < N . We consider the
optimization problem (25) - (26) in the case of K < N . The
objective function (25) can be rewritten as

tr
�
J̆−1
ψψ,D |ψ = ξ

�
=

σ2
n

2ρσ2

LT�
�=1

1

tr
�
WH ∂uN (ξLT ,�)

∂ξLT ,�

∂uHN (ξLT ,�)

∂ξLT ,�
W
� (27)

(a)
=

σ2
n

2ρσ2

LT�
�=1

1

vec
�∂uHN (ξLT ,�)

∂ξLT ,�
W
�H

vec
�∂uHN (ξLT ,�)

∂ξLT ,�
W
�

(28)

(b)
=

σ2
n

2ρσ2

LT�
�=1

1
−→wH

�
IK ⊗ ∂uN (ξLT ,�)

∂ξLT ,�

∂uHN (ξLT ,�)

∂ξLT ,�

�−→w
� f(−→w), (29)

where −→w = vec(W), Step (a) is valid due to
tr(AHB) = vec(A)Hvec(B), and Step (b) is valid because

Algorithm 1 The Proposed PGM-Based IRS Reflection Pat-
tern Design
Require: Stopping criterion �, step size δ, and targeted

look-angles {ξLT ,�}
1: Compute

∂uN (ξLT ,�)

∂ξLT ,�
for � = 1, . . . , LT .

2: Set i = 0 and initialize −→w(0).
3: repeat
4: Compute the gradient vector (30) at −→w(i).
5: Update −→w (i+1) = ΠC

�−→w (i) − ri �∇−→w∗f(−→w (i))
�
,

where ΠC is the projection onto C;

ri =
�

δ

|[∇−→w∗f(−→w(i))]1| , . . . ,
δ

|[∇−→w∗f(−→w(i))]
NK

|
�T

;

and � denotes elementwise multiplication.
6: i = i+ 1
7: until

..−→w (i) −−→w (i−1)
..2 / ..−→w (i−1)

..2 ≤ �

vec(AXB) = (BT ⊗A)vec(X) and (A1⊗B1)(A2 ⊗B2) =
(A1A2 ⊗ B1B2). Thus, the objective function is the sum
of the inverses of Rayleigh quotients since −→wH−→w = NKγ
under the constant modulus constraint |[W]p,q| =

√
γ, ∀p, q.

It is known that even the optimization of the sum of Rayleigh
quotients is not a simple problem. In our case, we have the
sum of the inverses of Rayleigh quotients and the element-
wise constant modulus constraint in addition. To tackle this
optimization problem, we adopt the PGM [16], [17]. PGM is
an iterative method applying gradient descent and projection
onto the constraint set in an alternating manner and is suited to
complicated constraints. The overall algorithm is summarized
in Algorithm 1. The objective function (29) is differentiable
and its Wirtinger complex gradient is given by

∇−→w∗f(−→w)=−
LT�
�=1

�
IK⊗ ∂uN (ξLT ,�)

∂ξLT ,�

∂uHN (ξLT ,�)

∂ξLT ,�

�
�−→wH

�
IK⊗ ∂uN (ξLT ,�)

∂ξLT ,�

∂uHN (ξLT ,�)

∂ξLT ,�

�−→w�2−→w .

(30)

We start with an initial point −→w (0). At the i-th iteration,
we update the current −→w (i) by using gradient descent based
on the gradient vector (30) and then project the updated vector
onto the constraint set C := {−→w = [w1, . . . , wKN ]T ∈
CKN : |wi| =

√
γ}. We repeat this iteration. In the step

size determination, we apply the technique in [39] to mitigate
the slow crawling problem of gradient decent near a local
minimum and help escape from local stationary points of the
objective function. That is, we normalize the magnitude of
each component of the gradient vector by multiplying the
i-th component of the gradient vector by its magnitude inverse,
as seen in Line 5 of Algorithm 1.

Note that the instantaneous CSI is not required for the
proposed training signal design. Because the Bayesian FIM
is derived by taking the expectation over the random gain and
angle and the hybrid FIM is derived by taking the expectation
over the random gain with a fixed set of target angles.

V. EXTENSIONS OF THE PROPOSED DESIGN

In this section, we consider several extensions relevant to
practical implementation of the proposed design.
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Extension to Multi-Antenna Transceiver: First, con-
sider the case of an M -antenna ULA at the receiver. Then,
the direct-path channel is modeled as hD =

�LD
i=1 αiuM (�i),

where αi and �i are the gain and AoA of the i-th path of the
channel from the transmitter to the receiver with LD multiple
paths. The indirect cascaded channel matrix HI ∈ CM×N is
similarly defined as

HI =
L(t)�
i=1

L(r)�
j=1

β
(t)
i β

(r)
j uM (ξ(r)i )uTN (ψ(t)

i + ψ
(r)
j )

=
LI�
�=1

β�uM (ξ�)uTN (ψ�) = Uξdiag(β)Uψ, (31)

where β
(t)
i and ψ

(t)
i are the gain and AoA of the i-th path

of the channel from the transmitter to the IRS; β(r)
j , ξ(r)j ,

and ψ(r)
j are the gain, AoA, and AoD of the j-th path of the

channel from the IRS to the receiver; β = [β1, . . . , βLI ]T

with LI = L(t)L(r). β� := β
(t)
i β

(r)
j , ξ� =: ξ

(r)
i , and

ψ� = ψ
(t)
i + ψ

(r)
j denote the effective gain, AoA and

AoD of the �-th path, respectively, and the array response
matrices are defined as Uξ = [uM (ξ1), . . . ,uM (ξLI )] and
Uψ = [uN (ψ1), . . . ,uN (ψLI )]. Then, the received signal
at the k-th symbol time corresponding to (1) is rewritten as
yk =

�
hD + HIw∗

k

�
sk + nk where nk ∼ CN (0, σ2

nIM ).
Accordingly, the received signal during the entire training
period can be expressed as

Y = [y, . . . ,yK ] =
�
U�α+ Uξdiag(β)UψW∗�S

+ [n1, . . . ,nK ], (32)

where U� = [uM (�1), . . . ,uM (�LD )] and α = [α1, . . . ,
αLD ]T . Similarly to (3), the received signal (32) can be
expressed in vector form as

y = vec(Y) = (S ⊗ IM )
�
1K ⊗ U� (WHUψ) ∗ Uξ

�
×
�
α
β

�
+ n, (33)

where n = [nT1 , . . . ,nTK ]T and the column-wise Khatri-Rao
product is defined as A ∗ B = [a1 ⊗ b1, . . . ,an ⊗ bn].
In (33), the IRS reflection pattern matrix W transforms only
the array manifold Uψ of the IRS as in the single-antenna
receiver case (3).4 Given this, the results in Sections III and IV
can directly be applied to the CRB derivation for the multi-
antenna case. In particular, when LD = 1, the minimum
Bayesian CRB is achieved with w̄1 = 0 as in Proposition 1.5

In the hybrid approach, the FIM relevant to ψ is derived as
[J̆ψψ,D]p,q = 2ρσ2

σ2
n
M

∂uHN (ψp)
∂ψp

Q∂u(ψq)
∂ψq

δp,q , which is the same

as the corresponding FIM (24) up to a constant multiplicative
factor. Therefore, the PGM-based algorithm for the single
antenna receiver can be applied to the multi-antenna receiver
case as well.

4The Bayesian and hybrid CRBs for the multi-antenna case can be derived
in a similar way for the single antenna case. The detailed derivation is omitted
due to space limitation.

5An extension of the Bayesian CRB-based design to the case of LD > 1
remains for future work.

In the multi-antenna transmitter case, the transmit beam
search is also required. For each transmit beam, the channel
between the transmitter and the IRS becomes a single beam-
weighted channel, which makes the multiple transmit antennas
completely transparent to the receiver. When the transmitter
sends K pilot symbols for each transmit beam, the correspond-
ing system model is equivalent to that in (32) and the proposed
K IRS reflection patterns can be jointly used for channel
estimation. This procedure is repeated until all transmit beams
are probed.

Remark 5: Note from (33) that when the path angles
�,ψ, ξ are known, we have a linear observation model for path
gain estimation. The necessary condition for the system matrix
to be invertible is K ≥ LI+LD

M . On the other hand, the obser-
vation (33) is related to a non-linear measurement model
from the angle estimation perspective due to the non-linear
relation between y and �,ψ, ξ. Hence, analyzing the minimum
training overhead for angle estimation is not straightforward
and could be algorithm-specific as seen in [20], [22].

Extension to the UPA-based IRS: Second, the proposed
design can be extended to UPA-based IRSs because a UPA is
in essence the Kronecker product of two ULAs. Accordingly,
the IRS reflection pattern is defined as the Kronecker product
of the horizontal and vertical patterns as wk = w(h)

k ⊗ w(v)
k .

Then, the received signal matrix with a UPA-based IRS is
expressed as

Y = (U�α+ Uξdiag(β)Uψ(h)ψ(v)W∗)S
+ [n1, . . . ,nK ], (34)

where Uψ(h)ψ(v) = [uN (ψ(h)
1 , ψ

(v)
1 ), . . .,uN (ψ(h)

LI
, ψ

(v)
LI

)] and
the array manifold of the IRS is defined as uN (ψ(h), ψ(v)) =
uNh(ψ

(h)) ⊗ uNv(ψ
(v)) with ψ(h) = sin(φ(h)) cos(φ(v))

and ψ(v) = sin(φ(v)) for the azimuth angle φ(h) (rad) and
the elevation angle φ(v) (rad). Compared to (32), the only
difference is that the IRS’s array manifold is changed to
Uψ(h)ψ(v) . Hence, the Bayesian and hybrid CRBs are similarly
derived so that the proposed design based on CRB can be
applied.

Extension to the Multi-User Case: Finally, consider the
multi-user case. In the downlink, the pilot symbols can be
shared across all users [40] and then the system model (3)
or (33) can be regarded as the channel measurement at each
user. In the uplink, it is required to transmit user-dedicated
pilot symbols so that the channels of multiple users are
separately estimated. Then, the pilot symbols of the multiple
users can be multiplexed over time [41], frequency [42],
or code [43] domain. Therefore, application of the proposed
design to the multi-user case is possible by treating (3) or (33)
as a system model for each multiplexed user.

VI. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the
proposed IRS reflection pattern design. During the simulation,
we set the magnitude of the reflection coefficient of each
element at the IRS as γ = 1. We used the channel model (2),
where the number of the IRS-assisted channel paths was set
L ∈ {1, . . . , 4}, α0 ∼ CN (μ0, σ

2) and α�
i.i.d.∼ CN (0, σ2),
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Fig. 3. Hybrid CRB comparision with several IRS reflection patterns versus SNR where N = 32, K = 8, and L = 3 (PGM represents the proposed
design with the initial pattern for Algorithm 1 which is shown in the parenthesis.): (a) tr

�
J̆−1
ψψ,D

�
/E{�ψ�2}, (b)

�
tr
�
J̆−1
αα

�
+ tr

�
J̆−1
α∗α∗

��
/E{�α�2},

(c)
�
[J̆−1
αα ]1,1 + [J̆−1

α∗α∗ ]1,1
�
/E{�α�2} at SNR = 5dB, and (d) diag

�
[J̆−1
αα ]2:L+1,2:L+1 + [J̆−1

α∗α∗ ]2:L+1,2:L+1

�
/E{�α�2} at SNR = 5dB. (The

subfigures (a)-(d) have the same legend.).

� = 1, . . . , L with μ0 = σ2 = 1 and d = λ
2 . The SNR is given

by SNR = ρ/σ2
n.

We considered the case of N = 32 and K = 8. We designed
the IRS pattern matrix by running Algorithm 1 with � =
10−10, δ = 1, and LT = N targeted look-angles evenly
spaced over [−1, 1]. Then, we generated ψ�

i.i.d.∼ Unif[−1, 1],
� = 1, . . . , L and computed tr

�
J̆−1
ψψ,D

�
and tr

�
J̆−1
αα

�
with

J̆αα = J̆αα,D + J̆αα,P by using the designed W and the
generated true angles ψ1, . . . , ψL. We repeated this procedure
for 5000 random channel realizations and then took average
over the 5000 Monte Carlo runs. Hence, this angle estimation
performance average corresponds to Eψ

�
J̆−1
ψψ,D

�
, i.e., the

bound (a) not the bound (b) in (5). For other IRS pattern
matrix designs, we applied the same Monte Carlo evaluation.
The result is shown in Fig. 3. It is seen in Fig. 3(a) that
the equi-spaced K DFT columns shows better performance
than the on-off method [11], the first K DFT columns [13],
a sparse Bernoulli random matrix with probability 0.1 [12],
a fixed unit-modulus matrix [20] since ψ� is distributed over
the angle range [−1, 1]. It is also seen that the proposed design
yields noticeable gain over the equi-spaced K DFT columns
and other designs. Note that the first K DFT columns and
the equi-spaced K DFT columns show different performance
here, whereas the two methods shows the same performance
in Fig. 2(a). This is because Fig. 3(a) shows the tighter
bound (a) in (5), whereas Fig. 2(a) shows the looser bound
(b) in (5). Fig. 3(b) shows the corresponding path-gain CRB
tr
�
J̆−1
αα

�
averaged over the Monte Carlo runs. It is seen that

the first K DFT columns and the fixed unit-modulus matrix
show severe performance degradation in path gain estimation.
This is because these methods have a heavy tail in the error
distribution due to large gain estimation error occurring when
the realized path angles are not within the coverage of the
first K DFT columns or the fixed unit-modulus vector, as seen
in Figs. 3(c) and (d). Due to the non-convexity in the objective
function (29), there exists several local stationary points and
the PGM-based algorithm can stop at some local minimum.
Thus, the performance of the PGM-based algorithm slightly
varies with distinct initial conditions especially for path gain
estimation in Fig. 3(b).

Then, we evaluated the hybrid CRB performance of the
IRS reflection patterns with different values of K . Fig. 4
shows that the designs using the orthogonal DFT matrix
achieve the best performance when K = N as expected, but
there is noticeable gain by the proposed design method as K
decreases from N . Finally, we examined the performance of
the proposed method with respect to the number of channel
paths L and the result is shown in Fig. 5. It is seen that the
CRB performance degrades as L increases due to the increased
number of parameters to estimate. It is also seen that the
design by Algorithm 1 yields better performance than other
methods. Note that the Bayesian CRB-based design does not
require any numerical calculation because the optimal structure
of W is derived analytically in Proposition 1. On the other
hand, the hybrid CRB-based design is numerically obtained by
Algorithm 1 for which the computational complexity can be
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Fig. 4. Hybrid CRB comparision with several IRS reflection patterns versus K where N = 32, L = 3, and SNR = 5dB.

Fig. 5. Hybrid CRB comparision with several IRS reflection patterns versus L where N = 32, K = 8, and SNR = 5dB.

measured by the number of required complex multiplications,
i.e., Niter(LT (N +(KN)2 +KN+1)+2KN), where Niter
denotes the expected number of iterations for convergence.

VII. CONCLUSION

We have considered the problem of training signal design
for IRS-assisted mmWave communication under a sparse
channel model. We have approached the problem based on
CRB for channel estimation. With the full Bayesian approach,
we have shown that the main factor affecting the angle
estimation performance is the Fisher information density given
by a quadratic form composed of the derivative of the ULA
response and the IRS reflection pattern matrix square Q. Based
on this fact, we have approached the IRS pattern matrix design
problem with a hybrid CRB under the assumption of random
path gains and unknown deterministic path angles. We have
proposed a PGM-based algorithm to solve optimal IRS pattern
matrix design focusing on the path angle estimation critical in
mmWave communication. We have validated the effectiveness
of the proposed design method with numerical evaluation.
Furthermore, development of estimation algorithms achieving
the CRB with the signal model (3) shall be studied as future
work.

APPENDIX

A. Proof of Theorem 1

Step 1: To prove Theorem 1, we first provide the following
lemma. Note that in the Bayesian case we need the expectation

of the second order derivatives of the logarithm of p(y,θ) with
θ = [αT ,ψT ]T , as seen in (7) - (9). The logarithm of p(y,θ)
is decomposed as ln p(y,θ) = ln p(θ) + ln p(y|θ) as seen
in (6), and Lemma 2 provides the second order derivatives of
ln p(y|θ).

Lemma 2: The second-order derivatives of the log-
likelihood function ln p(y|θ) under the observation model (3)
are given by

∂

∂α∗

�
∂ ln p(y|θ)

∂α∗

�H
= − ρ

σ2
n

�
K w̄HUψ

UH
ψ w̄ UH

ψQUψ

�
=
�
∂

∂α

�
∂ ln p(y|θ)

∂α

�H�∗
, (35)

∂

∂ψp

�
∂ ln p(y|θ)

∂ψq

�H
= − 1

σ2
n

�
−(y − m)H

∂2m
∂ψp∂ψq

+
∂mH

∂ψp

∂m
∂ψq

+
∂mH

∂ψq

∂m
∂ψp

− ∂2mH

∂ψp∂ψq
(y − m)

�
, (36)

∂

∂α∗

�
∂ ln p(y|θ)

∂ψ�

�H
=− 1

σ2
n

�
− /UH

ψ�
�WSH

�
y − S�WH�

1
Uψ

�
α

�
+ ρ
�

K w̄H

UH
ψ w̄ UH

ψQ

� /Uψ�α

�
(37)

=
�
∂

∂α

�
∂ ln p(y|θ)

∂ψ�

�H�∗
=
�

∂

∂ψ�

�
∂ ln p(y|θ)

∂α∗

�H�H
=
�

∂

∂ψ�

�
∂ ln p(y|θ)

∂α

�H�T
, (38)
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∂

∂α∗

�
∂ ln p(y|θ)

∂α

�H
=

∂

∂α

�
∂ ln p(y|θ)

∂α∗

�H
= 0L+10TL+1, (39)

where /Uψ� �
�
0N+1, [0, . . . , 0, 1
��

�th

, 0, . . . , 0]⊗

�
0,

∂uTN(ψ�)
∂ψ�

�T �
∈ C

(N+1)×(L+1) (40)

∂uN (ψ)
∂ψ

� ι2π
d

λ

�
0, eι2π

d
λψ, 2eι2π

d
λ 2ψ, . . . ,

(N − 1)eι2π
d
λ (N−1)ψ

�T
, (41)

and the variables of w̄ and Q are defined in (13).
Proof of Lemma 2: By differentiating ln p(y|θ) in (6) w.r.t.

α and ψ, we have

∂ ln p(y|θ)
∂α∗ =− 1

σ2
n

�
−
�
1

UH
ψ

� �WSHy + ρ

�
1

UH
ψ

�
�W�WH

�
1

Uψ

�
α

�
=
�∂ ln p(y|θ)

∂α

	∗
, (42)

∂ ln p(y|θ)
∂ψ�

=− 1
σ2
n

�
−(y − m)H

∂m
∂ψ�

− ∂mH

∂ψ�
(y − m)

�
(43)

= − 1
σ2
n

�
−yHS�WH /Uψ�α−αH /UH

ψ�
�WSHy

+ ραH
�
1

UH
ψ

� �W�WH /Uψ�α

+ ραH /UH
ψ�
�W�WH

�
1

Uψ

�
α

�
, (44)

where we used SHS = ρI for constant-modulus training
symbols in the quadratic terms in the RHSs of (42) and (44).
By differentiating (42) and (43) w.r.t. α and ψ again, we have

∂

∂α∗

�
∂ ln p(y|θ)

∂α∗

�H
= − ρ

σ2
n

�
1

UH
ψ

� �
K w̄H

w̄ Q

� �
1

Uψ

�
(45)

∂

∂α

�
∂ ln p(y|θ)

∂α

�H
= − ρ

σ2
n

�
1

UT
ψ

� �
K w̄T

w̄∗ Q∗

� �
1

U∗
ψ

�
(46)

∂

∂α∗

�
∂ ln p(y|θ)

∂α

�H
=

∂

∂α

�
∂ ln p(y|θ)

∂α∗

�H
0L+10TL+1,

(47)

and the expression for ∂
∂ψp

(∂ ln p(y|θ)
∂ψq

)H is given in (36),
which can further be detailed in a form like (44) based on
m = S�WH [α0,hT ]T . (The detailed expression is omitted
due to space limitation.) By using (42) and (44), the mixed
second-order partial derivative is similarly derived as

∂

∂α∗

�
∂ ln p(y|θ)

∂ψ�

�H
= − 1

σ2
n

�
− /UH

ψ�
�WSH

�
y − S�WH

×
�
1

Uψ

�
α

�
+ ρ
�

1
UH
ψ

� �W�WH /Uψ�α

�
, (48)

and the expressions ∂
∂α

�∂ ln p(y|θ)
∂ψ�

�H
, ∂
∂ψ�

�∂ ln p(y|θ)
∂α∗

�H
, and

∂
∂ψ�

�∂ ln p(y|θ)
∂α

�H
are given in (38). �

Step 2: The FIM Jθ̃θ̃ is obtained by applying −Ey,θ{·} to the
second-order derivatives of ln p(y,θ) = ln p(θ) + ln p(y|θ).
First, consider the log-likelihood part Jθ̃θ̃,D for which the
second-order derivatives are given in Lemma 2. The corre-
sponding submatrices are given by

Jαα,D = −Ey,θ

(
∂

∂α∗

�
∂ ln p(y|θ)

∂α∗

�H)
=

ρ

σ2
n

�
K ν∗11TL
ν11L ζ1IL + η1(1L1TL − IL)

�
, (49)

Jαψ,D = −Ey,θ

(
∂

∂α∗

�
∂ ln p(y|θ)

∂ψ

�H)
=

ρ

σ2
n

Eθ

(�
K w̄H

UH
ψ w̄ UH

ψQ

� �
0TL
Úψ

�
diag(α1, . . . , αL)

)
=

ρ

σ2
n

�
ν∗21TL

ζ2IL + η2(1L1TL − IL)

�
E{diag(α1, . . . , αL)},

(50)

Jψψ,D = −Ey,θ

(
∂

∂ψ

�
∂ ln p(y|θ)

∂ψ

�H)
=

1
σ2
n

Ey,θ

(
∂m
∂ψ

∂mH

∂ψ
+
�
∂m
∂ψ

∂mH

∂ψ

�∗)
=

2ρ
σ2
n

Re
�
ζ3diag(E{|α1|2}, . . . ,E{|αL|2})

+η3diag(E{α∗
1}, . . . ,E{α∗

L})H(1L1TL − IL)
diag(E{α1}, . . . ,E{αL})} , (51)

where

ν1 = ϕHψ w̄,

ζ1 =
N−1�
m=0

N−1�
n=0

ϕψ

�
2π
d

λ
(n−m)

�
[Q]m+1,n+1,

η1 = ϕHψ Qϕψ , (52)

ν2 = ϕ́Hψ w̄,

ζ2 = ι2π
d

λ

N−1�
m=0

N−1�
n=1

nϕψ

�
2π
d

λ
(n−m)

�
[Q]m+1,n+1,

η2 = ϕHψ Qϕ́ψ , (53)

ζ3 =
�

2π
d

λ

�2 N−1�
m=1

N−1�
n=1

mnϕψ

�
2π
d

λ
(n−m)

�
[Q]m+1,n+1,

η3 = ϕ́Hψ Qϕ́ψ , (54)

ϕ́ψ � ι2π
d

λ

�
0, ϕψ(2π d

λ
), ..., (N−1)ϕψ(2π d

λ
(N−1))

�T
with the characteristic function ϕψ(t) = E

�
eιtψ
�
,

Úψ �
� ∂uN (ψ1)

∂ψ1
. . . ∂uN (ψL)

∂ψL

� ∈ C
N×L. (55)

Under the parameter distribution assumptions
of ψ� ∼ Unif[Δ1,Δ2], E{α�} = 0, and
E{|α�|2} = σ2 for � = 1, . . . , L, we have

ϕψ
�
2π dλn

�
=
� 1, if n=0

eι2π(d/λ)n(Δ2+Δ1)/2
π(d/λ)(Δ2−Δ1) sin(2π dλn(

Δ2−Δ1
2 )), if n�=0 ,

Jαψ,D = 0L+10TL , and Jψψ,D = 2ρσ2

σ2
n
ζ3IL. By Lemma 2,
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Jα∗α∗ = (Jαα)∗, and Jα∗ψ,D, Jψα,D, and Jψα∗,D are
given by the complex conjugate, Hermitian conjugate, and
transpose of Jαψ,D, respectively, as seen in (38). The
remaining off-diagonal matrices Jαα∗,D and Jα∗α,D become
zero matrices by (39). Hence, we have the FIM Jθ̃θ̃,D,
as shown in Theorem 1 with (10) and (11).

Now consider the prior part Jθθ,P . From ln p(θ) =
ln p(α) + ln p(ψ) with ψ� ∼ Unif[Δ1,Δ2], the elements
of the FIM Jθ̃θ̃,P are derived similarly to those of Jθ̃θ̃,D
as follows: Jαα,P = −E{ ∂

∂α∗ (∂ ln p(θ)
∂α∗ )H},Jα∗α∗,P =

−E{ ∂
∂α (∂ ln p(θ)

∂α )H},Jψψ,P = −E{ ∂
∂ψ (∂ ln p(θ)

∂ψ )H} =
0L0TL , and the remaining off-diagonal matrices of Jθ̃θ̃,P are
all zero matrices. This completes the proof. �

B. Proof of Corollary 1

By exploiting the distribution of the path angle ψ� ∼
Unif[−1, 1] and the definitions of ϕψ in (14) and ϕ́ψ in (55),
we have ϕψ = [1, 0, . . . , 0]T and ϕ́ψ = 0N , because

ϕψ (nπ) = sin(πn)
πn =

�
1, if n=0
0, if n�=0 . In this case, the con-

stituent parameters of Jαα,D and Jψψ,D in (52) and (54)
are given by ν1 = w̄1, ζ1 = tr(Q), η1 = [Q]1,1, ζ3 =
π2
�N−1

m=1m
2[Q]m+1,m+1, and η3 = 0. By substituting these

results into (49) - (51), we have the FIMs Jαα,D and Jψψ,D,
as shown in (15) and (16).

Based on the assumption of α� ∼ CN (0, σ2) for � =
1, . . . , L, the diagonal submatrices of the FIM Jθ̃θ̃,P are
derived similarly to those of Jθ̃θ̃,D as follows: Jαα,P =
−E{ ∂

∂α∗ (∂ ln p(θ)
∂α∗ )H} = 1

σ2 IL+1 = Jα∗α∗,P , and Jψψ,P =
0L0TL . Hence, we have the claim. �

C. Proof of Lemma 1

The FIM Jαα = Jαα,D + Jαα,P with (10) and (12) can
be rewritten as

Jαα = (ρ/σ2
n)

�
K �IL+1 +

*
0 w̄∗

11
T
L

w̄11L τ
L1L1TL

+

+
�

0 0TL
0L ( τL − [Q]1,1)((L − 1)IL − IcL)

��
, (56)

where K � = K + σ2
n

ρσ2 , IcL � 1L1TL − IL and τ is defined
in (19). Then, by using (F.1) and (F.2) in Lemma 3 below,
the second and the third terms in the RHS of (56) are jointly
eigen-decomposed as in (57), shown at the bottom of the page,
where κ =

�
τ2 + 4L|w̄1|2 ≥ 0 and E, f1 and F2 are given

in Lemma 3. The equality (a) holds by (L − 1)IL − IcL =
F2FH2 . Then, by (59) and (60), the matrix B defined in (57)
is unitary due to the construction of E and F2 in Lemma 3

and EH
�

0TL−1
F2

�
=
�
e∗211

T
LF2

e∗221
T
LF2

�
=
�
e∗21

√
LfT1 F2

e∗22
√
LfT1 F2

�
= 020TL−1,

where eij are given in Lemma 3. Hence, (57) is the eigen-
decomposition of the sum of the second and third terms of
the RHS of (56). Then, by considering the first term K �IL+1

in the RHS of (56), the inverse of Jαα is eigen-decomposed
as in (18). �

Lemma 3: For any x ∈ C and non-negative τ, L ∈ R,
the following eigen-decompositions hold:

(F.1)

*
0 x∗1TL
x1

τ

L
1L1TL

+
= E

⎡⎣τ − κ

2
0

0
τ + κ

2

⎤⎦EH (58)

(F.2) IcL = 1L1TL − IL =
�
f1 F2

�
 �� 
=:F

×
�
L− 1 0TL−1

0L−1 −IL−1

� �
f1 F2

�H
, (59)

where κ =
�
τ2 + 4L|x|2, f1 = 1√

L
1L, F2 orthogonal to f1

is determined such that the matrix F in (59) is unitary, and
the L× 2 matrix E is given by

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
−
√

2L
κ

x∗4
1 − τ

κ

√
2L
κ

x∗4
1 +

τ

κ

1√
2L

4
1 − τ

κ
1L

1√
2L

4
1 +

τ

κ
1L

⎤⎥⎥⎥⎥⎥⎦ , if |x|2 �= 0

⎡⎣ 1 0

0L
1√
L

1L

⎤⎦ , if |x|2 = 0

�
�
e11 e12
e211L e221L

�
. (60)

Proof: Proof is by direct computation. �

E

⎡⎣ τ − κ
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0

0
τ + κ

2
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� τ
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	� 0 0TL−1
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� �
0 0TL−1

0L−1 LIL−1

� �
0 0TL−1

f1 F2

�H

(a)
= E

⎡⎣ τ − κ

2
0

0
τ + κ

2

⎤⎦EH +
�

0 0TL−1

f1 F2

� �
0 0TL−1

0L−1 (τ−L [Q]1,1) IL−1

� �
0 0TL−1

f1 F2

�H

= E
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0
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2
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�
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� �
(τ−L [Q]1,1) IL−1

� �0TL−1

F2

�H

=
�

E
0TL−1

F2

�

 �� 

=:B
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τ − κ

2
τ + κ

2
(τ − L [Q]1,1) IL−1

⎤⎥⎥⎦�E
0TL−1

F2

�H
, (57)
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J̆αψ,D = −Ey,α|ψ

(
∂

∂α∗

�
∂ ln p(y|α;ψ)

∂ψ

�H)
= 0L+10TL (61)

[J̆ψψ,D]p,q = −Eα|ψ

(
Ey|α,ψ

(
∂

∂ψp

�
∂ ln p(y|α;ψ)

∂ψq

�H))
=

2
σ2
n

Eα|ψ

(
Re

(
∂mH

∂ψp

∂m
∂ψq

))
=

2ρ
σ2
n

Eα|ψ

(
Re

(
α∗
pαq

∂uHN (ψp)
∂ψp

Q
∂uN (ψq)
∂ψq

))
(62)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ρ
σ2
n

�
2π
d

λ

�2

E

(
|αp|2

)N−1�
m=1

N−1�
n=1

mneι2π
d
λψp(n−m) [Q]m+1,n+1, if p = q

2ρ
σ2
n

�
2π
d

λ

�2

Re

(
E

(
α∗
p

)
E

(
αq

)N−1�
m=1

N−1�
n=1

mneι2π
d
λ (ψqn−ψpm) [Q]m+1,n+1

)
, if p �= q,

D. Proof of Theorem 2

Since the second-order derivative ∂
∂α∗ (∂ ln p(y|θ)

∂α∗ )H in (35)
of Lemma 2 is not a function of α and ψ is given, the FIM

for α is given by J̆αα,D = ρ
σ2
n

�
K w̄HUψ

UH
ψ w̄ UH

ψQUψ

�
= J̆∗

αα,D.

Applying −Ey,α|ψ{·} to (48) and (36), respectively, we obtain
J̆αψ,D and J̆ψψ,D as in (61) and (62), shown at the top of

the page, where ∂uHN (ψ)
∂ψ is defined in (41). Substituting the

assumption of independent Rayleigh fading α� ∼ CN (0, σ2),
� = 1, . . . , L into (62) yields [Jψψ,D]p,q = 0 for p �= q. The
remaining Jθ̃θ̃,D and Jθ̃θ̃,P can be derived in a similar way
to that in the proof of Theorem 1. �
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