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A Nonlinear Transceiver Architecture for
Overloaded Multiuser MIMO Interference Channels

Youngseok Oh, Heejung Yu, Yong H. Lee, and Youngchul Sung

Abstract—A new transceiver architecture for overloaded
MIMO interference channels is proposed to fix the rate saturation
problem of purely linear beamforming in this case. The proposed
scheme is based on a mixture of linear beamforming and multi-
user detection. It is shown that non-trivial degrees of freedom
can be achieved by the proposed mixed scheme properly dividing
the interference signals for linear processing and multiuser
detection, and the achievable degrees of freedom of the proposed
scheme are obtained. Numerical results show that the proposed
scheme outperforms linear beamforming in overloaded MIMO
interference channels.

Index Terms—Multi-user MIMO, MIMO interference chan-
nels, multi-user decoding, successive interference cancellation,
overloaded systems.

I. INTRODUCTION

MULTI-USER multiple-input multiple-output (MIMO)
interference channels have extensively been studied

recently because many concurrent wireless systems can be
modeled in this form. For K-user time-varying interference
channels, interference alignment (IA) has been introduced as
a powerful tool for achieving maximum degrees of freedom
(DoF) [1]. Although IA can achieve approximately one half of
the capacity that can be achieved in the absence of interference
at high signal-to-noise ratio (SNR), it has loss in the sum rate
at low and intermediate SNR, and thus, several algorithms
based on linear beamforming have been proposed for MIMO
interference channels to maximize the sum rate [2]–[5]. These
linear-beamforming-based algorithms yield higher sum rates,
especially at low and intermediate SNR, than IA, but their
sum rates also saturate in time-invariant overloaded1 MIMO
systems as SNR increases. (That is, the DoF of such a system
with linear beamforming is zero.) This is because the achiev-
able DoF of these algorithms based on linear beamforming is
the same as that of IA [6].

The rate saturation problem of an overloaded MIMO inter-
ference system can be resolved simply by using a scheduler.
For an overloaded example of four users and two antennas,
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1We define an overloaded MIMO interference system as a system in which

IA is not feasible even for one data stream per user. In this paper, we consider
the practical signal-space interference alignment only.
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Fig. 1. A K-user M ×M MIMO interference channel model.

DoF three instead of zero can be achieved by a simple round-
robin scheduler that allows only three transmitters to transmit
at a time. However, using a scheduler requires coordination
among transmitters. In this paper, we propose a transceiver
architecture based on nonlinear processing to enhance the
sum-rate performance for time-invariant overloaded MIMO
interference channels based on receiver processing only when
such scheduling among the transmitters is not available. Mo-
tivated by the transceiver scheme in two-user interference
channels with weak interference [7], at each receiver we
treat some interference signals as signals to be decoded
simultaneously with the desired signal by multi-user decoding
(MUD), while treating other interference signals as interfer-
ence to be suppressed by a linear receive filter. We propose
an exhaustive design method to maximize the sum rate under
the proposed system architecture, and propose a simplified
algorithm based on a person-by-person optimization approach
to reduce computational complexity. In the case of using suc-
cessive interference cancellation (SIC) as MUD, we derive a
strategy and the corresponding DoF for the proposed nonlinear
processing scheme. Even for a overloaded MIMO interference
channel, using the proposed scheme a nonzero DoF for the
overall system can be obtained without any scheduler unlike
the systems based on linear beamforming. The performance
of the proposed architecture is examined numerically. The
results show that the proposed system architecture can achieve
a much higher sum rate than the system based only on linear
beamforming in the overloaded case.

II. SYSTEM MODEL

We consider a time-invariant K-user M ×M MIMO inter-
ference channel, as shown in Fig. 1, where all transmitters and
receivers are equipped with M antennas per each (M ≥ 2).

0090-6778/12$31.00 c© 2012 IEEE



OH et al.: A NONLINEAR TRANSCEIVER ARCHITECTURE FOR OVERLOADED MULTIUSER MIMO INTERFERENCE CHANNELS 947

Each transmitter paired with a corresponding receiver inter-
feres with all the unpaired receivers. Transmitter k sends a
complex-valued data vector xk ∈ Cd×1 with power (or norm
square) P after preprocessing by Vk ∈ CM×d, where each
stream of xk is encoded from a Gaussian codebook, i.e.,
xk ∼ CN

(
0, Pd Id

)
; d represents the number of streams to

be sent from each transmitter; k ∈ K := {1, 2, . . . ,K}; Id
denotes a d×d identity matrix and Vk is the precoder matrix.
The time-invariant flat-fading MIMO channel from transmitter
j to receiver k is denoted as Hkj ∈ CM×M for k, j ∈ K,
where the (m,n)th entry of Hkj represents the complex
channel gain from the nth antenna of transmitter j to the
mth antenna of receiver k and is assumed to be a realization
of an independent and identically distributed (i.i.d) complex
Gaussian random variable with zero mean and unit variance.
We assume that the system is overloaded, i.e., K ≥ 2M
for M × M MIMO systems [6], and each terminal has all
the channel information. At each receiver, (K − 1−NMUD)
signals among all K−1 interference signals are suppressed by
a linear receive filtering matrix Uk ∈ CM×d and the NMUD

remaining interference signals pass through the linear receiver
filter and are then jointly decoded by MUD together with
the desired signal. Then, the received signal yk ∈ CM×1 at
receiver k is given by

yk = HkkVkxk +
∑

j∈Sk\{k}
HkjVjxj +

∑
j /∈Sk

HkjVjxj + zk,

(1)
where Sk is the set of indices of the transmitters whose signals
are decoded by MUD at receiver k and zk ∈ CM×1 is additive
white Gaussian noise2 (AWGN) with zk∼ CN (0, IM ). Here,
k ∈ Sk and |Sk| = NMUD + 1. The third and fourth terms
on the right-hand-side (RHS) of (1) are to be suppressed by
the linear receive filter Uk. The NMUD + 1 transmitters in
Sk and receiver k form a multiple access channel (MAC),
which will be referred to as the k th MAC hereafter. Given
Sk, P , and {Hkj}, the transmission rates under the proposed
scheme should reside within the capacity region of the k th
MAC for each k for successful transmission. That is, let
{R1(P, {Hkj}), · · · , RK(P, {Hkj})} denote the transmission
rates of all K transmitters for given (P , {Hkj}), and let
Rk(P, {Hkj}) denote the capacity region of the k th MAC.
Then, for successful transmission we have

(R1(P, {Hkj}), . . . , RK(P, {Hkj})) ∈
K⋂

k=1

Rk(P, {Hkj}).
(2)

III. DESIGN AND ANALYSIS

In this section we optimize the parameters d, NMUD , {Sk},
{Vj}, {Uk}, and {Rj} to maximize the sum rate of the
proposed nonlinear scheme. We first consider an exhaustive
search to optimize the design parameters of the proposed

2To simplify analysis, we neglect different path losses and shadowing terms
for the channel links, and assume that all of the channels are i.i.d and each
receiver has the same noise power. Under this assumption, all receivers in
the network have the same average SNR from all transmitters. This is a
reasonable and practical assumption under a cellular infrastructure in which
the users experiencing inter-cell interference are typically in the cell edge and
thus have similar average SNR.
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Fig. 2. Flow-chart for designing the proposed nonlinear system. The inner
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scheme. The procedure to obtain optimal d, NMUD , and {Sk}
for the proposed scheme is described in Fig. 2. For each
feasible combination of (d, NMUD, {Sk}), the parameters
{Vk,Uk, k = 1, · · · ,K}, and rate-tuple {Rk, k = 1, · · · ,K}
are obtained, and the corresponding sum rate is evaluated
and stored with the associated parameters. The parameters
associated with the maximum sum rate are selected. From here
on we explain each step in detail and analyze the performance
of the proposed scheme.

A. Design of precoders and receive filters

Given (d,NMUD) and {Sk}, the linear beamforming ma-
trices {Vj} and {Uk} are obtained by modifying one of
the existing linear beamformer design algorithms [5]. We
here consider the Max-SINR algorithm [2] which is shown
to be optimal at high SNR [5]. In the modified algorithm,
the interference-and-noise covariance matrix for the whitened
matched (or minimum mean square error (MMSE)) filtering
at receiver k is given by

Qk =
P

d

∑
j /∈Sk

HkjVjV
H
j HH

kj + IM , (3)

and the receiver filter Uk = αQ−1
k HkkVk with a normal-

ization factor α at receiver k is designed to suppress the
interference from the transmitters not contained in Sk and
noise. The precoders {Vj} are designed based on channel
reciprocity. That is, Vj is determined as the whitened matched
filter with the interference-and-noise covariance matrix

←−
Qj =

P
d

∑
k∈K\Dj

←−
HjkUkU

H
k

←−
HH

jk + IM , where
←−
Hjk = HH

jk due
to channel reciprocity as in [2] and Dj = {k|j ∈ Sk},
i.e., the index set of receivers that decode the signal of
transmitter j. Thus, in the modified algorithm other users’
signals that are jointly decoded by MUD are not included in
the interference-and-noise covariance, and the resulting {Vj}
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and {Uk} suppress the interference signals not contained in
Sk only. When Sk = {k} for all k, the modified algorithm
reduces to the original Max-SINR algorithm. At high SNR, the
modified algorithm obtains beamforming matrices satisfying3

UH
k HkjVj = 0d for {(j, k)|j �= k, j /∈ Sk, j, k ∈ K} (4)

(not for {(j, k)|j �= k, j, k ∈ K} as in the original IA
scheme), where 0d denotes a d × d all-zero matrix. Note
that a solution to (4) for {(j, k)|j �= k, j, k ∈ K} does not
exist in the overloaded case. However, a solution to (4) for
{(j, k)|j �= k, j /∈ Sk, j, k ∈ K} exists even in the overloaded
case if Sk are designed properly. This result is summarized in
the following proposition.

Proposition 1: In the proposed nonlinear scheme, {Vj}
and {Uk} satisfying (4) for {(j, k)|j �= k, j /∈ Sk, j, k ∈ K}
exist if

d≤min

{
M

2
, D̄

}
, where D̄ =

(2K −NCOM )M

K(K + 1−NMUD)−NCOM
(5)

and NCOM = |{j|j ∈ K, j ∈
K⋂

k=1

Sk}|, i.e., the number of

transmitters commonly contained in all Sk, k ∈ K.
Proof : The proof is similar to that for the general IA

condition in [6]. The condition d ≤ M/2 is trivial. Thus,
we focus on the second condition. {Vj} and {Uk} satisfying
(4) exist if and only if Nv ≥ Ne, where Nv and Ne are
the numbers of variables and equations in (4), respectively.
In (4), each UH

k HkjVj has d2 equations, and for a given
k the number of j’s not in Sk is (K − 1 − NMUD). Thus,
Ne = K(K − 1 −NMUD)d2. On the other hand, {Vj} and
{Uk} satisfying (4) consist of d linearly independent column
vectors. Such independent vectors can be obtained by setting
the first d rows of Vj and Uk as the d × d identity matrix.
Hence, the number of independent variables of Vj (or Uk) is
(M −d)d. Since the numbers of Vj and Uk to be determined
are K−NCOM and K , respectively (if j ∈ ⋂K

k=1 Sk, Vj does
not appear in (4)), we have Nv = (2K −NCOM )(M − d)d.
Now applying Nv ≥ Ne yields d ≤ D̄.

Corollary 1: We have

lim
K→∞

D̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , if NMUD is a constant,
M

CI
, if NMUD = K − CI and

NCOM = K − CC ,

2M

CI + 1
, if NMUD = K − CI and

NCOM is a constant,

(6)

for some positive integers CI and CC .
Proof : For each case, substitute the corresponding
(NMUD, NCOM ) into D̄ in (5), take limit limK→∞D̄,
and apply the L’Hopital’s Rule. Then, we obtain the result.

Corollary 2: Given K , M , and NMUD , D̄ monotonically
decreases as NCOM increases from zero to NMUD .

3It was shown that the solution (or fixed point) to the Max-SINR algorithm
satisfies the interference alignment property at high SNR [5]. (4) means that
we require the linear processing part to suppress the interference not contained
in Sk fully.

Proof : D̄ in (5) can be written as D̄(NCOM ) =
A−NCOMM
B−NCOM

(≥ 0), where A = 2KM and B = K(K +
1 − NMUD). Let α = NCOM and let β = NCOM + 1.
(αA + βBM) − (αBM + βA) = (β − α)(BM − A) ≥ 0
since α < β and BM ≥ A, (NMUD ≤ K − 1). Then,
D̄(NCOM )

D̄(NCOM+1)
= D̄(α)

D̄(β)
= AB+αβM−(αBM+βA)

AB+αβM−(αA+βBM) ≥ 1 for all
NCOM , and thus the claim follows.

Corollaries 1 and 2 provide a strategy to design {Sk} optimally
for the proposed scheme. Since 2M

CI+1 ≥ M
CI

in (6) for CI ≥
1, to maximize D̄, we should increase NMUD linearly with
K while keeping NCOM constant by Corollary 1. Also, by
Corollary 2, we should have NCOM = 0 to maximize D̄.
Note that, in the purely linear beamforming case, we have
NMUD = NCOM = 0, and thus, D̄ = 2M/(K+1) is strictly
less than one in the overloaded case K ≥ 2M , which implies
d = 0. On the contrary, the proposed nonlinear scheme yields
a non-zero DoF in the overloaded case by designing NMUD

and NCOM properly.

B. Data Rates and Achievable DoF

For the given (d,NMUD, {Sk}) and {Vk,Uk} obtained in
the previous subsection, the input to MUD at receiver k is
given by ȳk = UH

k yk and the capacity region Rk(P, {Hkj})
of the k th MAC is determined by a set of inequalities[8]∑

j∈Sk,i

Rj(P, {Hkj})≤I
(
x(Sk,i); ȳk|x(Sck,i)

)
, (7)

=log det

⎛
⎝I+Q−1

k

P

d

∑
j∈Sk,i

HkjTjH
H
kj

⎞
⎠(8)

for each k ∈ K, where Sk,i, i = 1, . . . , 2NMUD+1 − 1, are all
subsets of Sk except the empty set, x(Sk,i) := {xj ; j ∈ Sk,i},
x(Sck,i) := {xj; j ∈ Sck,i}, Qk is the interference-and-noise
covariance matrix defined in (3), and Tj = VjV

H
j , j ∈ Sk,i.

For successful transmission, the inequalities in (7) should be
satisfied for all k, and the rates maximizing the sum rate can
be obtained by solving the following linear programming (LP)
problem:

maximize
∑K

j=1 Rj(P, {Hkj})
subject to the inequalities in (7) for all k ∈ K. (9)

To simplify the analysis, from here on we consider succes-
sive interference cancellation (SIC) whose performance serves
as a lower bound for general MUD. Since the performance of
SIC depends on the decoding order, we define the decoding
order πk for Sk at receiver k. We also define M(πk)

j as the
subset of Sk containing the indices of all transmitters whose
data are decoded before transmitter j under the decoding order
πk. Then, the rate for transmitter j (∈ Sk) to receiver k under
SIC with the decoding order πk is bounded by

R
SIC(πk)
j (P, {Hkj}) ≤ I(xj ; ȳk|x(M(πk)

j ))

=: Ī
(πk)
kj (P, {Hkj}) (10)

for sufficiently large transmission block length. The rate in
(10) represents a corner point of the capacity region of the
k th MAC associated with Sk and πk. The maximum rate of
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transmitter j for reliable transmission under the decoding order
{πk} is given by

R̄
(π1,··· ,πK)
j (P, {Hkj}) = min

k∈Dj

{Ī(πk)
kj (P, {Hkj})}. (11)

Then, the optimal SIC decoding order is given by
(π∗

1 , · · · , π∗
K) = arg

π1,··· ,πK

max
∑K

j=1 R̄
(π1,··· ,πK)
j (P, {Hkj}),

and the optimal rate under SIC for given (d,NMUD) and {Sk}
is given by

R∗
j (P, {Hkj}) = min

k∈Dj

{Ī(π∗
k)

kj (P, {Hkj})}. (12)

The total DoF of the proposed scheme with SIC is now given
by

ΓSIC = lim
P→∞

∑K
j=1 R

∗
j (P, {Hkj})
logP

= lim
P→∞

∑K
j=1 min

k∈Dj

{Ī(π∗
k)

kj (P, {Hkj})}
logP

=
K∑
j=1

min
k∈Dj

Γkj , (13)

where Γkj := lim
P→∞

Ī
(π∗

k)
kj (P, {Hkj})/log(P ), because the

limit, summation, and min operation are order-independent
when the number of terms is finite. Γkj can easily be obtained
by noting that Ī(π

∗
k)

kj (P, {Hkj}) is in the following form:

Ī
(π∗

k)

kj (P, {Hkj}) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d∑
i=1

log
(
1 + PS

kj

)
, if M(π∗

k)

j =Sk\{j},

d∑
i=1

log

(
1 +

PS
kj

1 + P I
kj

)
, otherwise,

(14)
where PS

kj is the power of transmitter j’s signal and P I
kj is that

of the interference not cancelled yet at the stage of decoding
transmitter j. Thus, only the transmitter that is decoded at the
last decoding stage at each receiver has a non-zero degree of
freedom, i.e.,

Γkj =

{
d, if M(π∗

k)
j = Sk\{j},

0, otherwise.
(15)

If the signal of transmitter j is not decoded at the last stage
at all receivers in Dj , then Γkj = 0 for some k ∈ Dj , and
thus min{Γkj , k ∈ Dj} is zero in the proposed scheme with
SIC. Let NΓ0 be the number of such transmitters. Then, by
(13) and (15), ΓSIC is given by

ΓSIC = (K −NΓ0)d, (16)

because NΓ0 users have zero DoF and all the other K −NΓ0

users have d DoFs. Since |Sk| = NMUD + 1, we have
|{Γkj |1 ≤ j ≤ K, k ∈ Dj}| = K(NMUD + 1). From (15),
only K elements of {Γkj |1 ≤ j ≤ K, k ∈ Dj} are equal
to d. Hence, the set {Γkj |Γkj = 0, 1 ≤ j ≤ K, k ∈ Dj}
has KNMUD elements. It is seen from (16) that we should
minimize NΓ0 while maximizing d to maximize ΓSIC. In the
following, we obtain an upper bound of ΓSIC using the upper
bound (5) of d and a lower bound of NΓ0 given in Lemma 1.

Lemma 1: NΓ0 satisfies the following inequality:

NΓ0 ≥ KNMUD −NCOM

K − 1
. (17)

Proof : As mentioned earlier, there are a total of
K(NMUD + 1) MUD links in the system, and among them,
only K links have DoF d. Thus, KNMUD links of DoF zero
should be covered by NΓ0 transmitters with DoF zero. To
minimize NΓ0, each transmitter with DoF zero should cover
the maximum number of links of DoF zero. Thus, all NCOM

transmitters decoded at all receivers should be included in
the null-DoF-user set, and the remaining NΓ0−NCOM users
should also cover links with DoF zero maximally. In this way,
the best strategy yields

KNCOM + (K − 1)(NΓ0 −NCOM ) ≥ KNMUD, (18)

which results in (17).
Based on (16), (17), and (5), the total DoF ΓSIC is maximized
when

NΓ0 = �KNMUD −NCOM

K − 1
	 (19a)

and

d = min

{

M
2
�, 
 (2K −NCOM )M

K(K + 1−NMUD)−NCOM
�
}
,

(19b)
where �·	 and 
·� are ceil and floor operations, respectively.
When we set NMUD = K−CI and NCOM = 0, as suggested
by Corollaries 1 and 2, we have

NΓ0 = �K − (CI − 1) +
1− CI

K − 1
	

= �NMUD + 1 +
1− CI

K − 1
	

= NMUD + 1, (20)

where the third equality holds because CI ≤ K − 1. The
achievable DoF by the proposed mixed scheme in the over-
loaded case is given by the following proposition.

Proposition 2: Suppose that K ≥ 2M (overloaded),
NMUD = K − CI and NCOM = 0. (This (NMUD, NCOM )
pair maximizes d in (19) by Corollaries 1 and 2). Then, ΓSIC

is maximized if CI = 2M − 1, and the maximum total DoF
is given by

Γ∗
SIC = 2M − 2. (21)

Proof : From (16), (19), and (20), ΓSIC = (K − NΓ0)d =
(K −NMUD − 1)
 2KM

K(K+1−NMUD)� = (CI − 1)
 2M
CI+1�. Let


 2M
CI+1� = ι, where ι is a non-negative integer. The upper and

lower bounds of CI can then be obtained in terms of ι:

2M − ι− 1

ι+ 1
< CI ≤ 2M − ι

ι
.

Now suppose that ι = 1. Then, M − 1 < CI ≤ 2M − 1
and ΓSIC = CI − 1. In this case ΓSIC is maximized when
CI = 2M − 1 and the maximum total DoF is 2M − 2. When
ι = 2, we have 2M

3 −1 < CI ≤M −1 and ΓSIC = 2(CI −1);
ΓSIC is maximized for CI = M − 1 and the maximum is
2M − 4. In this manner, we can show that the maximum of
ΓSIC decreases as ι increases. Therefore, Γ∗

SIC is obtained for
ι = 1 and given by (21).
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Fig. 3. Sum rates of the proposed scheme and the linear scheme based on
the Max-SINR beamformer design algorithm: (a) (K,M) = (4, 2) and (b)
(K,M) = (8, 4).

For the example of K = 4 and M = 2, by Proposition 2, the
best user partition for the proposed mixed scheme in the DoF
sense is that one of three interfering transmitters is jointly
decoded with the desired transmitter (NMUD = 1) and the
other two interfering signals are suppressed by the front-end
linear beamforming, and this partition yields DoF 2. Note that
the best DoF of the proposed scheme is less than three by the
round-robin scheduler mentioned in the introduction. This loss
is caused by not having transmit coordination.

C. A Simplified Design Approach to the Proposed Scheme

For a given (d,NMUD) the number of all possible {Sk}
is

(
K−1

NMUD

)K
because there are K users and NMUD signals

are selected from K − 1 interference signals at each receiver.
Since the number of all possible pairs of (d,NMUD) is
M
2 (K−2) for an even M , the exhaustive search for the design

of the proposed scheme requires complexity with the order of
M
2 (K − 2)

(
K−1

NMUD

)K
. Since most of the complexity lies in

finding optimal {Sk} for a given (d,NMUD), the complexity
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Fig. 4. Sum rates of the proposed scheme with MUD for different values
of NMUD ((K,M) = (4, 2)).
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Fig. 5. Sum rates of the proposed scheme with MUD: exhaustive search
versus person-by-person optimization ((K,M) = (4, 2)).

can be greatly reduced by simplifying this step. We consider
the following person-by-person optimization approach. First,
we initialize Sk for receiver k, k ∈ K, with the indices of
randomly chosen NMUD interfering transmitters. We calculate
the sum rate for this selection. Then, we pick one receiver and
obtain the best set of interfering transmitters for this receiver
yielding the highest sum rate while fixing the MUD index
sets of the remaining receivers. We move to the next receiver
and repeat the same procedure and stop the iteration after
some cycles. It will be shown in the next section that this
simple person-by-person optimization approach with polyno-
mial complexity performs well compared with the exhaustive
search. Thus, the proposed mixed scheme can be designed
efficiently.

IV. NUMERICAL RESULTS

In this section, we provide some numerical results for
the proposed scheme. We considered two overloaded cases
K = 4,M = 2 and K = 8,M = 4 satisfying the overloaded
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condition K ≥ 2M [6]. For the results in this section,
the MIMO channel coefficients of Hkj were generated i.i.d.
from complex Gaussian distribution with zero mean and unit
variance, and the rate results were obtained by averaging
over 500 independent channel realizations. Fig. 3 shows the
sum rates of the proposed nonlinear scheme with SIC or
MUD, and the linear beamforming scheme. Here, the Max-
SINR beamformer design algorithm was used for both cases,
and the nonlinear scheme was designed using the person-by-
person optimization approach with one cycle. Also, we used
NMUD = 1 in both cases of K = 4 and K = 8, based
on Proposition 2. As expected, the proposed scheme shows
performance with nonzero DoF while the linear scheme shows
sum-rate saturation yielding zero DoF. Thus, the performance
gain by the proposed mixed scheme over the linear scheme
is significant at high SNR in the overloaded case. It is seen
that the scheme with MUD yields a higher sum rate than the
scheme with SIC, as expected. However, the performance gap
is not significant and the DoF is the same for both cases.

Fig. 4 shows the sum rate of the proposed mixed scheme
with MUD for several different values of NMUD when K = 4.
As expected by our analysis, the case of NMUD = 1 yields the
highest sum rate. Finally, Fig. 5 shows the performance loss
by the simple person-by-person optimization approach. It is
seen that the suboptimal person-by-person approach performs
almost as well as the exhaustive search.

V. CONCLUSION

We have proposed a mixed transceiver architecture based
on linear beamforming and MUD to solve the rate saturation
problem of purely linear beamforming occurring in overloaded

MIMO interference channels. We have shown that a non-
trivial DoF can be achieved by the proposed mixed scheme by
properly dividing the interference signals for linear processing
and MUD. We have obtained the best design parameters
for the proposed mixed scheme and the corresponding DoF.
We have provided numerical results to validate the proposed
scheme, and the numerical results show that the proposed
scheme outperforms linear beamforming in overloaded MIMO
interference channels. The proposed mixed scheme provides
an alternative to handle overloaded MIMO interference sys-
tems when scheduling among the transmitters is not available.
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