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Abstract—In this paper, the outage probability and outage-
based beam design for multiple-input multiple-output (MIMO)
interference channels are considered. First, closed-form expres-
sions for the outage probability in MIMO interference channels
are derived under the assumption of Gaussian-distributed chan-
nel state information (CSI) error, and the asymptotic behavior of
the outage probability as a function of several system parameters
is examined by using the Chernoff bound. It is shown that the
outage probability decreases exponentially with respect to the
quality of CSI measured by the inverse of the mean square
error of CSI. Second, based on the derived outage probability
expressions, an iterative beam design algorithm for maximizing
the sum outage rate is proposed. Numerical results show that
the proposed beam design algorithm yields significantly better
sum outage rate performance than conventional algorithms such
as interference alignment developed under the assumption of
perfect CSI.

Index Terms—Multiuser MIMO, interference channels, chan-
nel uncertainty, outage probability, Chernoff bound, interference
alignment.

I. INTRODUCTION

DUE to their importance in current and future wireless
communication systems, multiple-input multiple-output

(MIMO) interference channels have gained much attention
from the research community in recent years. Since Cadambe
and Jafar showed that interference alignment (IA) achieved
the maximum number of degrees of freedom in MIMO
interference channels [2], there has been extensive research
in devising good beam design algorithms for MIMO in-
terference channels. Now, there are many available beam
design algorithms for MIMO interference channels such as
IA-based algorithms [3]–[5] and sum-rate targeted algorithms
[3], [4], [6]–[9]. However, most of these algorithms assume
perfect channel state information (CSI) at transmitters and
receivers, whereas the assumption of perfect CSI is unrealistic
in practical wireless communication systems since perfect CSI
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is typically unavailable in practical systems due to channel
estimation error, limited feedback or other limitations [10].
Thus, the CSI error should be incorporated into the beam
design to yield better performance, and this is typically done
under robust beam design frameworks.

There are many robust beam design studies in the conven-
tional single-user MIMO case and also in the multiple-input
and single-output (MISO) multi-user case. In the MISO multi-
user case, the problem is more tractable than in the MIMO
multi-user case, and extensive research results are available
on MISO broadcast and interference channels with imperfect
CSI [11]–[13]; the outage rate region is defined for MISO
interference channels in [11], and the optimal beam structure
that achieves a Pareto-optimal point of the outage rate region
is given in [12]. For more complicated MIMO interference
channels, there are several pioneering works on robust beam
design under CSI uncertainty [14]–[16]. In [14], the authors
solved the problem based on a worst-case approach. In their
work, the CSI error is modelled as a random variable under
a Frobenius norm constraint, and a semi-definite relaxation
method is used to obtain the beam vectors that maximize the
minimum signal-to-interference-plus-noise ratio (SINR) over
all users and all possible CSI error. In [15], on the other
hand, the CSI error is modelled as an independent Gaussian
random variable, and the beam is designed to minimize the
mean square error (MSE) between the transmitted signal and
the reconstructed signal at the receiver with given imperfect
CSI at the transmitter (CSIT).

In this paper, we consider robust beam design in MIMO
interference channels based on a different criterion. Here, we
consider the rate outage due to channel uncertainty and the
problem of sum rate maximization under an outage constraint
in MIMO interference channels. This formulation is practi-
cally meaningful since an outage probability is assigned to
each user and the supportable rate with the given outage
probability is maximized. Here, we assume that the trans-
mitters and receivers have imperfect CSI and the CSI error
is circularly-symmetric complex Gaussian distributed. Under
this assumption, we first derive closed-form expressions for
the outage probability in MIMO interference channels for
an arbitrarily given set of transmit and receive beamforming
vectors, and then derive the asymptotic behavior of the outage
probability as a function of several system parameters by using
the Chernoff bound. It is shown that the outage probability
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decreases exponentially with respect to (w.r.t.) the quality
of CSI measured by the inverse of the mean square error
(MSE) of CSI, typically called the channel K factor [10]
or interpreted as the Fisher information [17] in statistical
estimation theory. In particular, it is shown that in the case
of interference alignment, the outage probability can be made
arbitrarily small by improving the CSI quality if the target rate
is strictly less than the rate obtained by using the estimated
channel as the nominal channel. Next, based on the derived
outage probability expressions, we propose an iterative beam
design algorithm for maximizing the weighted sum rate under
the constraint that the outage probability for each user is
less than a certain level. Numerical results show that the
proposed beam design algorithm yields better sum outage
rate performance than conventional beam design algorithms
such as the ‘max-SINR’ algorithm [3] developed without the
consideration of channel uncertainty.

A. Related work

The outage analysis for MIMO interference channels has
been performed by several other researchers [16], [18]. In
[16], the outage probability for a given rate tuple is computed
under the assumption that knowledge of the channel mean
and covariance matrix is available, and transmit and receive
beam vectors that minimize the power consumption for a
given outage constraint are obtained. However, it is difficult to
generalize this method of analysis to the case of multiple data
streams per user, whereas our analysis includes the multiple
data stream case. In [18], the outage probability and SINR
distribution of each user in MIMO interference channels with
the knowledge of channel distribution information are obtained
under a particular transmit and receive beam structure of IA
transmit beams and zero-forcing (ZF) receivers. On the other
hand, our analysis can be applied to the case of general
transmit and receive beam structures beyond IA and ZF.

The probability distribution of a quadratic form of Gaussian
random variables has been studied extensively in statistics
[19]–[22] and in communications [23]–[25]. The most widely-
used approach to obtain the probability distribution of a
Gaussian quadratic form is the series fitting method [20],
[21], [23], [26], which typically converges to the probability
distribution of a Gaussian quadratic form from the lower tail
first. However, the outage definition associated with robust
beam design for MIMO interference channels in this pa-
per requires accurate computation of upper tail probabilities.
The series expansion for the cumulative distribution function
(CDF) obtained in this paper based on the integral form for
the CDF in [25] and the residue theorem [22] is well suited
to this purpose and converges to the upper tail first. Thus, the
obtained series in this paper is more relevant for our outage
analysis. For a detailed explanation of the derived series,
please refer to [27].

B. Notation and organization

We will make use of standard notational conventions. Vec-
tors and matrices are written in boldface with matrices in
capitals. All vectors are column vectors. For a matrix A,
AH , ‖A‖F and A(i, j) indicate the Hermitian transpose,

the Frobenius norm and the element in row i and column
j of A, respectively, and vec(A) and tr(A) denote the
vector composed of the columns of A and the trace of A,
respectively. For vector a, ‖a‖ and [a]i represent the 2-norm
and the i-th element of a, respectively. In stands for the
identity matrix of size n (the subscript is included only when
necessary), and diag(d1, · · · , dn) means a diagonal matrix
with diagonal elements d1, · · · , dn. x ∼ CN (μ,Σ) means
that the random vector x has the circularly-symmetric complex
Gaussian distribution with mean vector μ and covariance
matrix Σ. K = {1, 2, · · · ,K}, ι =

√−1, and |A| denotes
the cardinality of the set A.

The paper is organized as follows. The system model and
problem formulation are described in Section II. In Section III,
closed-form expressions for the outage probability are derived,
and the behavior of the outage probability as a function of
several system parameters is examined by using the Chernoff
bound. In Section IV, an outage-based beam design algorithm
is proposed. Numerical results are provided in Section V,
followed by the conclusion in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a K-user time-invariant MIMO
interference channel in which each transmitter equipped with
Nt antennas is paired with a receiver equipped with Nr

antennas, and interferes with all receivers other than the
desired receiver. We assume that transmitter k transmits d (≤
min(Nt, Nr)) independent data streams to receiver k paired
with transmitter k. Then, the received signal at receiver k is
given by

yk = HkkVksk +
K∑

i=1,i�=k

HkiVisi + nk, (1)

where Hki is the Nr × Nt channel matrix from transmit-
ter i to receiver k; Vi = [v

(1)
i , · · · ,v(d)

i ] is the Nt × d
transmit beamforming matrix with normalized column vectors
at transmitter i, i.e., ||v(m)

i || = 1 for m = 1, · · · , d; and
si = [s

(1)
i , · · · , s(d)i ]T is the d×1 symbol vector at transmitter

i. We assume that the transmit symbol vector si is drawn from
the zero-mean Gaussian distribution with unit variance, i.e.,
si ∼ CN (0, I), and the additive noise vector nk is zero-mean
Gaussian distributed with variance σ2, i.e., nk ∼ CN (0, σ2I).
We assume that the CSI available to the system is not perfect.
That is, neither the transmitters nor the receivers have perfect
CSI. For the imperfect CSI, we adopt the following model

Hki = Ĥki +Eki (2)

for each (k, i) ∈ K × K, where Hki is the unknown true
channel, Ĥki is the channel state available to the transmitters
and the receivers, and Eki is the error between the true
and available channel information. For the CSI error Eki

between the true and available channel information, we adopt
the Kronecker error model which is widely used for MIMO
systems to model the error correlation that may be caused
by the transmit and receive antenna structure [10]. Under this
model, the CSI error Eki is given by

Eki = Σ1/2
r H

(w)
ki Σ

1/2
t , (3)
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with vec(H(w)
ki ) ∼ CN (0, σ2

hI) for some σ2
h ≥ 0, where

Σt and Σr are transmit and receive antenna correlation
matrices, respectively, and the elements of H

(w)
ki are in-

dependent and identically distributed (i.i.d.) and are drawn
from a circularly-symmetric zero-mean complex Gaussian
distribution. The CSI uncertainty matrix Eki is a circularly-
symmetric1 complex Gaussian random matrix with distribution
vec(Eki) ∼ CN (0, σ2

h(Σ
T
t ⊗ Σr)) [10, p.90], and σ2

h is the
parameter capturing the uncertainty level in CSI. We assume
that the Eki’s are independent across transmitter-receiver pairs
(k, i). To specify the quality of CSI and signal reception, we
define two parameters

K
(ki)
ch :=

‖Ĥki‖2F
E{‖Eki‖2F }

=
‖Ĥki‖2F

σ2
htr(ΣT

t ⊗Σr)
(4)

and

Γ(k) :=
‖Ĥkk‖2F

σ2
. (5)

K
(ki)
ch is the channel K factor defined as the ratio of the power

of the known channel part to that of the unknown channel part,
representing the quality of CSI [10], and Γ(k) is the signal-to-
noise ratio (SNR) at receiver k since Vk and sk are normalized
in our formulation. Hereafter, we will use Ĥ to represent the
collection of channel information {Ĥki,Σt,Σr} known to the
transmitters and receivers. By using the receiver filter u

(m)
k

(||u(m)
k || = 1), receiver k projects the received signal yk in

(1) to recover the desired signal stream m:

ŝ
(m)
k

= (u
(m)
k )Hyk

= (u
(m)
k )H

(
(Ĥkk +Ekk)Vksk +

K∑
i=1,i�=k

(Ĥki +Eki)Visi + nk

)
.

We assume that the design of the transmit beamform-
ing matrices {Vk, k ∈ K} and receive filters {Uk =

[u
(1)
k , · · · ,u(d)

k ], k ∈ K} is based on the available CSI Ĥ. This
model of beam design and signal transmission and reception
captures many coherent linear beamforming MIMO schemes
including interference alignment and sum rate maximizing
beamforming schemes [3], [6], [28] in which transmit and
receive beamforming matrices are designed based on available
CSI at transmitters and receivers. Under this processing model,
the SINR for stream m of user k is given by (6) on the
next page where the numerator of the right-hand side (RHS)
of (6) is the desired signal power, and the first, second,
third and fourth terms in the denominator of the RHS of (6)
represent the interference purely by channel uncertainty, inter-
stream interference, other user interference and thermal noise,
respectively. (Here, the dependence of SINR on Ĥ is explicitly
shown. Since the dependence is clear, the notation |Ĥ will be
omitted hereafter.) Because the {Eki} are random, SINR(m)

k is
a random variable for given Ĥ and {Vk(Ĥ),Uk(Ĥ), k ∈ K}.
Thus, an outage at stream m of user k occurs if the supportable
rate determined by the received SINR (6) is below the target

1The circular symmetry of a random matrix of the form AZB with constant
matrices A and B and a circularly-symmetric complex Gaussian matrix Z
can easily be shown by a similar technique to that used in the appendix.

rate R
(m)
k , and the outage probability is given by

Pr{outage} = Pr
{
log2

(
1 + SINR

(m)
k

)
≤ R

(m)
k

}
. (7)

By rearranging the terms in (6), the outage event can be
expressed as

K∑
i=1

d∑
j=1

X
(mj)H
ki X

(mj)
ki ≥ |u(m)H

k Ĥkkv
(m)
k |2

2R
(m)
k − 1

− σ2 =: τ, (8)

where

X
(mj)
ki :=

{
u
(m)H
k Ekkv

(m)
k , i = k and j = m,

u
(m)H
k (Ĥki +Eki)v

(j)
i , otherwise.

(9)
Since the {Eki} are circularly-symmetric complex Gaussian
random matrices, {X(mj)

ki , i = 1, · · · ,K, j = 1, · · · , d} are
circularly-symmetric complex Gaussian random variables, and
the left-hand side (LHS) of (8) is a quadratic form of non-
central Gaussian random variables. To simplify notation, we
will use vector form from here on. In vector form, (8) can be
expressed as

X
(m)H
k X

(m)
k ≥ τ, (10)

where X
(m)
k := [X

(m1)
k1 , · · · , X(md)

k1 , X
(m1)
k2 , · · · , X(md)

kK ]T .
The elements of the mean vector μ(m)

k (:= E{X(m)
k }) of X(m)

k

are given by

[μ
(m)
k ](i−1)d+j =

{
0, i = k, j = m,

u
(m)H
k Ĥkiv

(j)
i , otherwise,

(11)
for i = 1, · · · ,K and j = 1, · · · , d, and the covariance matrix
Σ

(m)
k of X

(m)
k is given by a block diagonal matrix, since

{Eki, i = 1, · · · ,K} are independent for different values of
i, i.e.,

Σ
(m)
k := E{(X(m)

k − E{X(m)
k })(X(m)

k − E{X(m)
k })H}

= diag(Σ
(m)
k,1 , · · · ,Σ(m)

k,K), (12)

where the d× d sub-block matrix Σ
(m)
k,i is given by

Σ
(m)
k,i =σ2

h(u
(m)H
k Σru

(m)
k ) (13)

·

⎡
⎢⎢⎢⎢⎣

v
(1)H
i Σtv

(1)
i v

(2)H
i Σtv

(1)
i · · · v

(d)H
i Σtv

(1)
i

v
(1)H
i Σtv

(2)
i v

(2)H
i Σtv

(2)
i · · · v

(d)H
i Σtv

(2)
i

...
...

. . .
...

v
(1)H
i Σtv

(d)
i v

(2)H
i Σtv

(d)
i · · · v

(d)H
i Σtv

(d)
i

⎤
⎥⎥⎥⎥⎦

for each i. (The proof of (13) is given in the appendix.) In
the following sections, we will derive closed-form expressions
for (7), investigate the behavior of the outage probability as a
function of several parameters, and propose an outage-based
beam design algorithm.

III. THE COMPUTATION OF THE OUTAGE PROBABILITY

In this section, we first derive a closed-form expression for
the outage probability in the general case of the Kronecker CSI
error model, and then consider special cases. After this, we
examine the behavior of the outage probability as a function
of several important system parameters based on the Chernoff
bound.
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SINR
(m)
k

∣∣
Ĥ =

|(u(m)
k )HĤkkv

(m)
k |2

|(u(m)
k )HEkkv

(m)
k |2 +∑j �=m |(u(m)

k )H(Ĥkk +Ekk)v
(j)
k |2 +∑i�=k

∑d
j=1 |(u(m)

k )H(Ĥki +Eki)v
(j)
i |2 + σ2

.

(6)

A. Closed-form expressions for the outage probability

For a Gaussian random vector X ∼ CN (μ,Σ) with the
eigendecomposition of its covariance matrix Σ = ΨΛΨH ,
the CDF of XHQ̄X for some given Q̄ is given by [25]

Pr{XHQ̄X ≤ τ}

=
1

2π

∫ ∞

−∞

eτ(ιω+β)

ιω + β

e−c

det(I+ (ιω + β)Q)
dω (14)

for some β > 0 such that I + βQ is positive definite,
where Q = ΛH/2ΨHQ̄ΨΛ1/2, χ = Λ−1/2ΨHμ and

c = χH
(
I+ 1

ιω+βQ
−1
)−1

χ. From here on, we will derive
closed-form series expressions for the CDF of the outage
probability in several important cases by applying the residue
theorem used in [22] to the integral form (14) for the CDF.
First, we consider the most general case of the Kronecker CSI
error model. The outage probability in this case is given by
the following theorem.

Theorem 1: For given transmit and receive beamform-
ing matrices {Vk = [v

(1)
k , · · · ,v(d)

k ]} and {Uk =

[u
(1)
k , · · · ,u(d)

k ]} designed based on Ĥ = {Ĥki,Σt,Σr},
the outage probability for stream m of user k with the
target rate R

(m)
k under the CSI error model (2) and (3) is

given by (15) on the next page where τ is given in (8);
{λi, i = 1, · · · , κ} are all the distinct eigenvalues of the
Kd×Kd covariance matrix Σ

(m)
k in (12) with eigendecom-

position Σ
(m)
k = Ψ

(m)
k Λ

(m)
k Ψ

(m)H
k ; κi is the multiplicity2 of

the eigenvalue λi; χ
(j)
i is the element of vector

χ
(m)
k := (Λ

(m)
k )−

1
2Ψ

(m)H
k μ

(m)
k (16)

corresponding to the j-th eigenvector of the eigenvalue λi (1 ≤
j ≤ κi), i.e., it is the j-th element of (λiIκi)

− 1
2Ψ

(m)H
k,i μ

(m)
k

(Ψ(m)
k,i is a Kd× κi matrix composed of the eigenvectors of

Σ
(m)
k associated with λi.);

gi(s) =
eτs

s− 1/λi
·
exp

(
−∑

p �=i
(s−1/λi)λp

1+(s−1/λi)λp

∑κp

q=1 |χ(q)
p |2

)
∏

p �=i

(
1 + (s− 1/λi)λp

)κp
;

(17)
and g

(n)
i (s) is the n-th derivative of gi(s) w.r.t. s.

Proof: By using (14) and the facts Q̄ = I and X
(m)
k ∼

CN (μ
(m)
k ,Σ

(m)
k ) in this case, we obtain the outage probability

for stream m of user k in an integral form as

Pr{X(m)H
k X

(m)
k ≥ τ}

= 1− 1

2πι

∫ β+ι∞

β−ι∞

esτ

s
· e

−∑κ
i=1

sλi
1+sλi

(
∑κi

j=1 |χ(j)
i |2)∏κ

i=1(1 + sλi)κi
ds,

(18)

2Since Σ
(m)
k is a normal matrix, we have Kd =

∑κ
i=1 κi.

where s = β + ιω (β > 0). The outage probability (18) can
be expressed as a contour integral:

Pr{X(m)H
k X

(m)
k ≥ τ}

= 1− 1

2πι

∮
C

esτ

s
· e

−∑κ
i=1

sλi
1+sλi

(
∑κi

j=1 |χ(j)
i |2)∏κ

i=1(1 + sλi)κi︸ ︷︷ ︸
=:F (s)

ds, (19)

where C is a contour of integration containing the imaginary
axis and the whole left half plane of the complex plane. By the
residue theorem, the sum of the residues at singular points of
F (s) which do not have positive real parts yields the contour
integral in (19) times 2πι. It is easy to see that the singular
points of F (s) are s = 0 and s = −1/λi, i = 1, · · · , κ. Since
Σ

(m)
k,i are all positive-definite, Σ(m)

k is positive definite and
λi > 0 for all i. So, the outage probability is given by

Pr{outage} = 1−
(

Res
s=0

F (s) +

κ∑
i=1

Res
s=−1/λi

F (s)
)
. (20)

It is also easy to see from (19) that the residue of F (s) at
s = 0 is Res

s=0
F (s) = 1. To compute Res

s=−1/λi

F (s), for each i

we introduce Gi(s) defined as (21) in the next page. Now, the
residue of F (s) at s = −1/λi is transformed to that of Gi(s)
at s = 0. The Laurent series expansion of fi(s) and the Taylor
series expansion of gi(s) at s = 0 are given respectively by

fi(s) =
1

(λis)κi

∞∑
n=0

1

n!

(∑κi

j=1 |χ(j)
i |2

λis

)n
(22)

and

gi(s) =
∞∑
n=0

1

n!
g
(n)
i (0)sn. (23)

By multiplying the two series and computing the coefficient
of 1/s, we obtain the residue of Gi(s) at s = 0 as

Res
s=0

Gi(s) =
e
−( τ

λi
+
∑κi

j=1 |χ(j)
i |2)

λκi

i

×
∞∑

n=κi−1

1

n!
g
(n)
i (0)

1

(n− κi + 1)!

(∑κi

j=1 |χ(j)
i |2

λi

)n−κi+1

(24)

for each i. Finally, substituting the residues into (20) yields
(15).

To compute (15), we need to compute {λi}, {χ(j)
i } and the

higher order derivatives of gi(s). The first two terms are easy
to compute since they are related to the mean vector of size
Kd and the covariance matrix of size Kd×Kd. Furthermore,
the higher order derivatives of gi(s) can also be computed
efficiently based on a recursion. (Please see [27].) Note that
in the case in which the elements H

(w)
ki in (3) have different



PARK et al.: OUTAGE PROBABILITY AND OUTAGE-BASED ROBUST BEAMFORMING FOR MIMO INTERFERENCE CHANNELS WITH IMPERFECT . . . 3565

Pr{outage} = Pr{log2(1 + SINR
(m)
k ) ≤ R

(m)
k }

= −
κ∑

i=1

e
−( τ

λi
+
∑κi

j=1 |χ(j)
i |2)

λκi

i

∞∑
n=κi−1

1

n!
g
(n)
i (0)

1

(n− κi + 1)!

(∑κi

j=1 |χ(j)
i |2

λi

)n−κi+1

(15)

Gi(s) := F

(
s− 1

λi

)
=

eτ(s−1/λi)

s− 1/λi
· e

−∑κ
p=1

λp(s−1/λi)

1+λp(s−1/λi)
(
∑κp

q=1 |χ(q)
p |2)∏κ

p=1(1 + λp(s− 1/λi))κp

=
eτ(s−1/λi)

s− 1/λi
· e

−λis−1

λis

∑κi
j=1 |χ(j)

i |2

(λis)κi
· e

−∑
p �=i

λp(s−1/λi)

1+λp(s−1/λi)

∑κp
q=1 |χ(q)

p |2∏
p�=i(1 + λp(s− 1/λi))κp︸ ︷︷ ︸

=:I1

= e
−( τ

λi
+
∑κi

j=1 |χ(j)
i |2) × e

1
λis

∑κi
j=1 |χ(j)

i |2

(λis)κi︸ ︷︷ ︸
=:fi(s)

×
(

eτs

s− 1/λi
× I1

)
︸ ︷︷ ︸

=:gi(s)

. (21)

variances, (15) is still valid since the different variances only
change the covariance matrix (12) and the outage expression
depends on the covariance matrix (12) through {λi} and
{χ(j)

i }.
Next, we provide some useful corollaries to Theorem 1

regarding the outage probability in meaningful special cases.
First, we consider the case in which a subset of channels are
perfectly known at receiver k, i.e., Hki = Ĥki and Eki = 0
for some i ∈ K. This corresponds to the case in which channel
estimation or CSI feedback for some links is easier than that
for other links. For example, the desired link channel may be
easier to estimate than others. The outage probability in this
case is given by the following corollary.

Corollary 1: When perfect CSI for some channel links
including the desired link is available at receiver k, i.e.,
Ĥki = Hki for i ∈ Υk ⊂ K, the outage probability for stream
m of user k is given by

Pr{outage}
= Pr{log2(1 + SINR

(m)
k ) ≤ R

(m)
k } (25)

= −
κ′∑
i=1

[
e
−( τ′

λi
+
∑κi

j=1 |χ(j)
i |2)

λκi

i

×
∞∑

n=κi−1

1

n!
g
(n)
1,i (0)

1

(n− κi + 1)!

(∑κi

j=1 |χ(j)
i |2

λi

)n−κi+1 ]

where τ ′ is defined below; {λi, i = 1, · · · , κ′} is the set of
all the distinct eigenvalues of the covariance matrix (12); κi

is the multiplicity of λi, satisfying (K − |Υk|)d =
∑κ′

i=1 κi;
χ
(j)
i is given in (16); and

g1,i(s) =
eτ

′s

s− 1/λi
·
exp

(
−∑

p �=i
(s−1/λi)λp

1+(s−1/λi)λp

∑κp

q=1 |χ(q)
p |2

)
∏

p �=i

(
1 + (s− 1/λi)λp

)κp
.

(26)

Proof: When CSI for some links including the desired
link is perfect, the outage event at stream m of user k is
given by (27) on the next page, since Eki = 0 for i ∈ Υk.

Thus, in this case the outage event is expressed in a quadratic
form as follows:

∑
i∈Υc

k

d∑
j=1

X
(mj)H
ki X

(mj)
ki ≥ |u(m)H

k Ĥkkv
(m)
k |2

2R
(m)
k − 1

(28)

−
∑
i∈Υk

d∑
j=1,
j �=m

|u(m)H
k Ĥkiv

(j)
i |2 −

∑
i∈Υk,
i�=k

|u(m)H
k Ĥkiv

(m)
i |2 − σ2 =: τ ′

and we have X
(mj)
ki ≡ 0 for all i ∈ Υk (See (9)). The size

of X
(m)
k now reduces to (K − |Υk|)d, and the size of the

covariance matrix Σ
(m)
k is (K − |Υk|)d× (K − |Υk|)d. With

the new threshold τ ′, the same argument as that in Theorem
1 can be applied to yield the result.

Thus, when perfect CSI is available for some links, the order
of the distribution is reduced under the same structure. Next,
consider the specific beam design method of interference
alignment and the corresponding outage probability, which
can be obtained by Corollary 1 and is given in the following
corollary.

Corollary 2: When the desired channel link is perfectly
known (i.e. k ∈ Υk) and {Vk} and {Uk} are designed under
IA based on Ĥ, the outage probability for stream m of user
k is given by

Pr{outage} = −
κ′∑
i=1

1

λκi

i

e
− τ′

λi
1

(κi − 1)!
g
(κi−1)
1,i (0). (29)

Proof: First, express the random term in (28) as∑
i∈Υc

k

∑d
j=1 X

(mj)H
ki X

(mj)
ki = (X

(m)
k )HX

(m)
k . When the

beam is designed under IA based on Ĥ, we have E{X(m)
k } =

0 since u
(m)H
k Ĥkiv

(j)
i = 0 for all i ∈ K\{k} ⊃ Υc

k,
j = 1, · · · , d. (See (11).) Hence, χ(m)

k = 0 and thus χ
(j)
i = 0

for all i and j. (See (16).) Then, the terms in the infinite series
in (25) are zero for all n > κi − 1 from the fact that 00 = 1
and 0! = 1, and the result follows.

The outage probability for single stream communication is
given in Corollary 3.
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log2

(
1 +

|u(m)H
k Ĥkkv

(m)
k |2∑

i∈Υk

d∑
j=1,
j �=m

|u(m)H
k Ĥkiv

(j)
i |2 + ∑

i∈Υk,
i�=k

|u(m)H
k Ĥkiv

(m)
i |2 + ∑

i∈Υc
k

d∑
j=1

|u(m)H
k (Ĥki +Eki)v

(j)
i |2 + σ2

)
≤ R

(m)
k (27)

Corollary 3: When d = 1 and all eigenvalues of Σ(m)
k are

distinct, the outage probability for user k is given by

Pr{outage}
= Pr{log2(1 + SINRk) ≤ Rk}

= −
K∑
i=1

e−(|χi|2+τ/λi)

λi

∞∑
n=0

(
1

n!

)2( |χi|2
λi

)n
g
(n)
i (0), (30)

where gi(s) in (17) reduces to

gi(s) =
eτs

s− 1/λi
· e

−∑
p �=i

λp(s−1/λi)

1+λp(s−1/λi)
|χp|2∏

p�=i

(
1 + λp(s− 1/λi)

) .
(Here, we have omitted the stream superscripts since the
stream index is unique.)

Proof: Since all eigenvalues are assumed to be distinct,
there are κ = K eigenvalues with κi = 1 for all i. Substituting
these into Theorem 1 yields the result.

Now, let us consider a simpler case for d = 1 with no antenna
correlation. In this case, the outage probability is given as an
explicit function of the channel uncertainty level σ2

h, and it is
given by the following corollary to Theorem 1.

Corollary 4: When d = 1 and there is no antenna correla-
tion, the outage probability is given by

Pr{outage} = − 1

(σ2
h)

K
e
−( τ

σ2
h

+‖χ
k
‖2)

×
∞∑

n=K−1

1

n!
g(n)(0)

1

(n−K + 1)!

(‖χk‖2
σ2
h

)n−K+1

,

(31)

where χk = E{Xk}/σh and g(s) = eτs

s−1/σ2
h

.
Proof: In this case, an outage at user k occurs if and

only if XH
k Xk ≥ |uH

k Ĥkkvk|2
2Rk−1

− σ2. Now, the covariance
matrix Σk of Xk is σ2

hIK (see (12) and (13)), and thus there
is only one eigenvalue σ2

h with multiplicity K . Moreover,
χk = E{Xk}/σh from (16) since Ψk = I and Λk = σ2

hI. By
substituting these into Theorem 1, the outage probability (31)
is obtained.

B. The behavior analysis of the outage probability based on
the Chernoff bound

The obtained exact expressions for the outage probability in
the previous subsection can easily be computed numerically,
and will be used for the robust beam design based on the
outage probability in Section IV. Before we address the
outage-based robust beam design problem, let us investigate
the behavior of the outage probability as a function of several
parameters. Suppose that transmit and receive beam vectors
{v(m)

k ,u
(m)
k } are designed by some known method based

on Ĥ. For the given beam vectors, as seen in the obtained

expressions, the outage probability is a function of other
system parameters such as the known channel mean {Ĥki},
the noise variance σ2, the channel uncertainty level σ2

h, the
antenna correlation Σt and Σr, and the target rate R(m)

k . Here,
the dependence on Ĥkk, σ2 and R

(m)
k is via the threshold

τ(Ĥkk , σ
2, R

(m)
k ), and the dependence on σ2

h, Σt, Σr and
{Ĥki, i �= k} is via χ

(m)
k (Σ

(m)
k (σ2

h,Σt,Σr),E{X(m)
k }(Ĥki))

and the eigenvalues of Σ
(m)
k,i (σ

2
h,Σt,Σr). This complicated

dependence structure makes it difficult to analyze the prop-
erties of the outage probability as a function of the system
parameters. Thus, in this subsection we apply the Chernoff
bounding technique [17] to the tractable3 case of d = 1 to
obtain insights into the outage probability as a function of
several important parameters. When d = 1, the outage event
is expressed as

Pr

{
XH

k Xk ≥ τ =
|uH

k Ĥkkvk|2
(2Rk − 1)

− σ2

}

= Pr

{ K∑
i=1

XH
kiXki ≥ τ

}
. (32)

Since Ek1, · · · ,EkK are independent and circularly-
symmetric complex Gaussian random matrices, Xk1, · · · ,
XkK are independent and circularly-symmetric complex
Gaussian random variables. (See (9).) Thus, the term on the
LHS in the second bracket in (32) is a sum of independent
random variables, and the Chernoff bound can be applied to
yield

Pr{XH
k Xk ≥ τ} ≤ e−τs

K∏
i=1

E

{
es|Xki|2

}
(33)

for any s > 0. The moment generating function (m.g.f.) of
|Xki|2 (Xki ∼ CN (μki, σ

2
ki)) is given by E{es|Xki|2} =

1
1−σ2

kis
exp

(
|μki|2s
1−σ2

kis

)
for s < 1/σ2

ki, where μkk = 0, μki =

uH
k Ĥkivi for i �= k, and σ2

ki = σ2
h(u

H
k Σruk)(v

H
i Σtvi).

(See (9,11,13).) Therefore, the Chernoff bound on the outage
probability is given by

Pr{XH
k Xk ≥ τ}

≤ e−τs
K∏
i=1

1

1− σ2
kis

exp

( |μki|2s
1− σ2

kis

)
(34)

= exp

{
−
[
τs+

K∑
i=1

log(1− σ2
kis) +

K∑
i=1

|μki|2s
σ2
kis− 1

]}

3In certain cases of d > 1, the Chernoff bound can still be obtained when
each element in X

(m)
k is independent of the others. Such cases include the

case in which there is no antenna correlation and the transmit beam vectors
are orthogonal as in the IA beam case. In this case, similar results to the case
of d = 1 are obtained.
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for 0 < s < mini{1/σ2
ki}. Now, (34) provides a tool to

analyze the behavior of the outage probability as a function of
several important parameters. The most desired property is the
behavior of the outage probability as a function of the channel
uncertainty level. This behavior is explained in the following
theorem.

Theorem 2: When d = 1, as σ2
h → 0, the outage probability

decreases to zero, and the decay rate is given by

Pr{outage} ≤ e−c1 · exp(−c2/σ
2
h) (35)

for some c1 and c2 > 0 not depending on σ2
h, if the target

rate Rk and the designed transmit and receive beam vectors
{vk,uk} satisfy

Rk < R̄k = log2

⎛
⎜⎜⎜⎝1 +

|uH
k Ĥkkvk|2∑K

i=1
|μki|2

1− (uH
k
Σruk)(vH

i
Σtvi)

tr(Σr)tr(Σt)

+ σ2

⎞
⎟⎟⎟⎠ .

(36)

Proof: (34) is valid for any s ∈ (0,mini{1/σ2
ki}).

So, let s = 1/σ2
htr(Σt)tr(Σr) (< mini{1/σ2

ki} since
||vk|| = ||uk|| = 1 and σ2

ki = σ2
h(u

H
k Σruk)(v

H
i Σtvi) ≤

σ2
htr(Σt)tr(Σr) for all i). Then, the exponent in (34) is

given by (37) on the next page. Now, substituting τ =
|uH

k Ĥkkvk|2/(2Rk −1)−σ2 into the inequality c2 > 0 yields
(36).

Theorem 2 states that the outage probability decays to zero
as the CSI quality improves, more precisely, it decays ex-
ponentially w.r.t. the inverse of channel estimation MSE (or
equivalently w.r.t. the channel K factor), if the target rate is
below R̄k. In the Fisherian inference framework, the inverse
of estimation MSE is information. Thus, another way we
can view the above is that the outage probability decays
exponentially as the Fisher information for channel state
increases, if the target rate is below a certain value. So, the
outage probability due to channel uncertainty is another case
in which information is the error exponent as in many other
inference problems. In certain cases, the condition (36) can
be simplified considerably. For example, when interference-
aligning beam vectors based on Ĥ are used at the transmitters
and receivers, we have μki = uH

k Ĥkivi = 0 for i �= k
in addition to μkk = 0, and the condition is simplified to
Rk < log2

(
1 +

|uH
k Ĥkkvk|2

σ2

)
. Thus, in the case of interfer-

ence alignment the outage probability can be made arbitrarily
small by improving the CSI quality if the target rate is strictly
less than the rate obtained by using Ĥkk as the nominal
channel. Next, consider the outage behavior as the effective
SNR, Γeff := |uH

k Ĥkkvk|2/σ2, increases. Since the two
terms determining the effective SNR are contained only in
τ , it is straightforward to see from (34) that

Pr{outage} ≤ c3 exp (−c4Γeff ) , (38)

for some c3 and c4 = sσ2/(2Rk − 1) > 0 not depending on
Γeff . Finally, consider the case in which the target rate Rk

decreases. One can expect that the outage probability decays to
zero if the target rate decreases to zero. The decaying behavior
in this case is given in the following theorem.

Theorem 3: When d = 1, as Rk → 0, the outage probabil-
ity decreases to zero, and the decay rate is given by

Pr{outage}
≤ c6 exp

(
− c7
2Rk − 1

)
= c6 exp

(
− c′7
Rk + o(Rk)

)
(39)

for some c7, c′7 > 0 not depending on Rk. The last equality
is when Rk is near zero.

Proof: Let s be any positive constant contained in
an interval (0, 1/maxi{σ2

h(u
H
k Σruk)(v

H
i Σtvi)}). Then,

the exponent in (34) becomes (40) on the next page.
Hence, the Chernoff bound is given by Pr{outage} ≤
c6 exp

(
− s|uH

k Ĥkkvk|2
2Rk−1

)
= c6 exp

(
− c′7

Rk+o(Rk)

)
for some

c′7 > 0. The last equality is when Rk is near zero. In this case,
we have 2Rk − 1 = (log 2)Rk+ o(Rk) by Taylor’s expansion.

IV. OUTAGE-BASED ROBUST BEAM DESIGN

In this section, we propose an outage-based beam design
algorithm based on the closed-form expressions for the outage
probability derived in the previous section. Our assumption
is that Ĥ is given for the beam design, as mentioned ear-
lier. Suppose that transmit and receive beamforming matrices
{Vk,Uk} are designed by using any available beam design
method based on Ĥ. Based on the designed {Vk,Uk} and
known {Ĥ, σ2}, one can compute and use a nominal rate for
transmission. Since Ĥ is not perfect, however, an outage may
occur depending on the CSI error if the nominal rate is used for
transmission. Of course, the outage probability can be made
small by making the transmission rate low or by improving the
CSI quality, as seen in Section III-B. However, these methods
are inefficient sometimes since we may have limitations in
the CSI quality or need as high rate as possible for given Ĥ.
Further, in many wireless systems the target outage probability
for transmission is determined and the data transmission is
performed under such an outage constraint. Thus, we here
consider the beam design problem when the outage probability
is given as a system parameter. In particular, we consider the
following per-stream based beam design problem to maximize
the sum ε-outage rate for given Ĥ:

maximize
{v(m)

k },{u(m)
k }

K∑
k=1

d∑
m=1

R
(m)
k (41)

subject to Pr{log2(1 + SINR
(m)
k

∣∣
Ĥ) ≤ R

(m)
k } ≤ ε (42)

‖u(m)
k ‖ = ‖v(m)

k ‖ = 1, (43)

∀k ∈ K, m = 1, · · · , d,
where the ε-outage rate for stream m of user k is the maximum
rate satisfying (42). Like other beam design problems in
MIMO interference channels, the simultaneous joint optimal
design for all transmit and receive beam vectors for this
problem also seems difficult. Hence, we propose an itera-
tive approach to the above sum ε-outage rate maximization
problem. The proposed method is explained as follows. In
the first step, we initialize {v(m)

k } and {u(m)
k } properly (here

a known beam design algorithm for the MIMO interference
channel can be used), and then find an optimal rate-tuple
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− τ

σ2
htr(Σt)tr(Σr)

−
K∑
i=1

log

[
1− (uH

k Σruk)(v
H
i Σtvi)

tr(Σt)tr(Σr)

]
−

K∑
i=1

|μki|2
σ2
h(u

H
k Σruk)(vH

i Σtvi)− σ2
htr(Σt)tr(Σr)

= − 1

σ2
h

{
τ

tr(Σt)tr(Σr)
+

K∑
i=1

|μki|2
(uH

k Σruk)(vH
i Σtvi)− tr(Σt)tr(Σr)

}
︸ ︷︷ ︸

(=:c2)

−
K∑
i=1

log

[
1− (uH

k Σruk)(v
H
i Σtvi)

tr(Σt)tr(Σr)

]
︸ ︷︷ ︸

(=:c1)

(37)

−τs−
K∑
i=1

log[1− σ2
h(u

H
k Σruk)(v

H
i Σtvi)s]−

K∑
i=1

|μki|2s
sσ2

h(u
H
k Σruk)(vH

i Σtvi)− 1︸ ︷︷ ︸
(=:c5)

= −
(
|uH

k Ĥkkvk|2
2Rk − 1

− σ2

)
s− c5 = −|uH

k Ĥkkvk|2
2Rk − 1

s− c′5 (40)

(R
(1)
1 , · · · , R(d)

1 , R
(1)
2 , · · · , R(d)

K ) that maximizes the sum for
given {v(m)

k ,u
(m)
k } under the outage constraint. This step is

performed based on the derived outage probability expressions
in the previous section. Since designing each R

(m)
k does not

affect others, this step can be done separately for each R
(m)
k .

Since the outage probability for stream m of user k increases
monotonically w.r.t. R

(m)
k , the optimal R

(m)
k in this step is

the rate with the outage probability ε. In the second step, for
the obtained rate-tuple and receive beam vectors {u(m)

k } in
the first step, we update the transmit beam vectors {v(m)

k }
to minimize the maximum of the outage probabilities of all
streams and all users. (Since the outage probabilities of all
streams of all users are ε at the end of the first step, this
means that the outage probability decreases for all streams
and all users.) Here, we apply the alternating minimization
technique [29] to circumvent the difficulty in the joint transmit
beam design. (The change in one transmit beam vector affects
the outage probabilities of other users.) That is, we optimize
one transmit beam vector while fixing all the others at a time.
We iterate this procedure from the first stream of transmitter
1 to the last stream of user K until this step converge. In
the third step, we design the receive beam vector u

(m)
k to

minimize the outage probability at stream m of user k with the
rate-tuple determined in the first step and {v(m)

k } determined
in the second step for each (k,m). This optimization can
also be performed separately for each stream of each user
since the receiver filter for one stream does not affect the
performance of other streams. Finally, we go back to the first
step with the updated transmit and receive beam vectors (in the
revisited first step, the rate for each stream will be increased
by increasing the outage probability up to ε again), and iterate
the procedure until the sum ε-outage rate does not change.
We have summarized the sum outage rate maximizing beam
design algorithm in Table I.

Theorem 4: The proposed beam design algorithm con-
verges.

Proof: It is straightforward to see that the sum ε-outage
rate increases monotonically for each iteration of the three

TABLE I
THE PROPOSED ALGORITHM FOR SUM ε-OUTAGE RATE MAXIMIZATION

WITH CHANNEL UNCERTAINTY

The Proposed Algorithm

Input: channel state estimate Ĥ and allowed outage prob-
ability ε.

0. Initialize {v(m)
k } and {u(m)

k } as sets of unit-norm vectors
properly.

1. For given {Vk} and {Uk}, find (R
(1)
1 , · · · , R(d)

K ) that
maximizes

∑K
k=1

∑d
m=1 R

(m)
k while the outage con-

straint is satisfied.
2. Update {Vk = [v

(1)
k , · · · ,v(d)

k ]} for {R(m)
k } and

{U(m)
k } given from step 1.

• For pair (i, j), fix {v(m)
k , k = 1, · · · ,K, m =

1, · · · , d}\{v(j)
i } and {Uk} and solve

v
(j)
i = argmin

v∈CNt

max
k,m

Pr{outage(m)
k }. (44)

(Here, a commercial tool such as the MATLAB fminimax
function can be used to solve (44) together with the
derived outage expression.)
• Iterate the above step from the first stream of transmitter
1 to the last stream of transmitter K until {V1, · · · ,VK}
converges.

3. For each receiver 1 to K, obtain the receive filter u
(m)
k

that minimize the outage probability of stream m of
receiver k for given {Vk} from step 2 and given R

(m)
k

from step 1. (Here, again a commercial tool such as the
MATLAB fmincon function can be used together with the
derived outage expression.)

4. Go to step 1 and repeat the whole procedure until the
algorithm converges.

steps of the proposed algorithm. Also, the maximum sum
rate is bounded by the rate with perfect CSI. Hence, the
algorithm converges by the monotone convergence theorem
for real sequences.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to vali-
date our series derivation, to examine the outage probability
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Fig. 1. Comparison of two series expressions for the CDF of a quadratic
form of Gaussian random variables. X ∼ CN ([0.5, 0.5, 0.5, 0.5]T , 0.3I4),
Q̄ = [1, 0.5, 0, 0; 0.5, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], and β = 2 for Laguerre
series expansion.

as a function of several system parameters and to evaluate the
performance of the proposed beam design algorithm. For given
Σt, Σr, K(ki)

ch and Γ(k), we first generated {Ĥki} randomly
according to a zero-mean Gaussian distribution, and then
scaled Ĥki to yield ‖Ĥki‖2F = NtNr for all (k, i). In this way,
the channel K factor and the SNR were simply controlled by
σ2
h and σ2, respectively. After {Ĥki} were generated as such,

we generated {Eki} according to (3) and the true channel
was determined by (2) if necessary4. For simplicity, we used
K

(ki)
ch = Kch for all (k, i) and Γ(k) = Γ for all k.
First, Fig. 1 compares the convergence behavior of the

derived series in this paper with that of the series fitting
method [20], [21], [23], [26] based on the Laguerre basis
functions for a given set of parameters shown in the label
of the figure. It is seen that indeed our series converges
from the upper tail first whereas the series fitting method
converges from the lower tail first. (For a proof of this in
the identity covariance matrix case, please refer to [27].) Note
that the series fitting method yields large error at the upper
tail distribution even with a reasonably large number of terms.
With this verification, next consider the outage behavior as
a function of several system parameters. Fig. 2 shows the
outage probability w.r.t. the target rate Rk for a given set
{Ĥki} (randomly generated as above) with several different
channel K factors, when K = 3, Nt = Nr = 2d = 2,
Σt = Σr = I, Γ = 15 dB and the transmit and receive beam
vectors were designed by the iterative interference alignment
(IIA) algorithm [3]. The solid and dotted lines represent the
result of our analysis, and the markers + and × indicate the
result of Monte Carlo runs for the outage probability. The
theoretical outage curves in Fig. 2 were obtained by using
(25) with the first 38 terms in the infinite series. It is seen that
our analysis matches the results of the Monte Carlo runs very
well. The dashed line shows the outage performance when

4The computation of the closed-form outage probability requires only the
channel statistics and {Ĥki} regarding the channel information, but for Monte
Carlo runs we need to generate {Eki}.
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Fig. 2. Outage probability versus the target rate Rk (K = 3, Nt = Nr =
2d = 2, Σt = Σr = I, Γ = 15 dB. Transmit and receive beam vectors are
obtained by the IIA algorithm in [3].)

Kch = ∞, i.e., all transmitters and receivers have perfect CSI.
In the case of Kch = ∞, we have a sharp transition behavior
across Rlimit determined by the SINR (6) with Eki = 0 for all
(k, i). It is seen that the outage performance deteriorates from
the ideal step curve of Kch = ∞, as the CSI quality degrades.
The solid lines correspond to the outage performance for the
finite values of Kch, when the CSI for all channel links is
imperfect. It is seen that Kch = 100 (20 dB) yields reasonable
outage performance compared with the perfect CSI case in
this setup. Note that the gain in the outage probability by
knowing the desired link perfectly is not negligible. (See the
dotted lines.) Fig. 3 show the outage probability w.r.t. the
target rate Rk for a given set {Ĥki} with several different
Kch, when K = 3, Nt = Nr = 2d = 4, Σt = Σr = I,
Γ = 25 dB and the transmit and receive beam vectors were
designed by the IIA algorithm. Similar behavior is seen as in
the single stream case, i.e., the outage performance generally
deteriorates as Kch decreases. However, it is interesting to
observe in the multiple stream case that sufficiently good but
not perfect CSI quality yields better outage performance than
does perfect CSI in the high outage probability regime. (See
Fig. 3 (b).) This implies that in the multiple stream case the
second term (i.e., the self inter-stream interference term) in
the denominator of the SINR formula (6) is made smaller by
Ekk’s being negatively aligned with Hkk than in the case of
Ekk ≡ 0. However, this is not useful in system operation
since the system is operated in the low outage probability
regime. All the theoretical curves in Figures 3 (a) and (b) were
obtained from (25) with the first 45 terms in the infinite series.
Fig. 4 shows the outage probability curves when the transmit
and receive beamforming vectors are respectively chosen as
the right and left singular vectors corresponding to the largest
singular value of the desired channel and the other parameters
are identical to the case in Fig. 2. A similar outage probability
behavior to the previous case is observed.

Next, the outage probability w.r.t. the channel K factor for
a given set {Ĥ} for several values of the target rate Rk is
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Fig. 3. Outage probability versus the target rate Rk (K = 3, Nt = Nr = 2d = 4, Σt = Σr = I, Γ = 25 dB. Transmit and receive beam vectors are
designed by the IIA algorithm in [3].)
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Fig. 4. Outage probability versus the target rate Rk (K = 3, Nt = Nr =
2d = 2, Σt = Σr = I, Γ = 15 dB. Transmit and receive beam vectors are
respectively chosen as the right and left singular vectors corresponding to the
largest singular value of the desired channel matrix.)

shown in Fig. 5, where the outage probability along the y-
axis is drawn in log scale. (The same setup as for Fig. 2
was used and the IIA algorithm is used for the transmit and
receive beam design. Here, (25) with the first 38 terms in the
infinite series was used to compute the analytic curves.) As
predicted by Theorem 2, the outage probability indeed decays
exponentially w.r.t. the channel K factor (equivalently, w.r.t.
the inverse of σ2

h). The exponent depends on the target rate
Rk; the higher the target rate is, the smaller the exponent is.
This decaying behavior is also predicted in Theorem 2; the
exponent c2 in (35) is proportional to τ , and τ is inversely
proportional to the target rate Rk. It is seen that the outage
probability does not decay as Kch increases, if Rk is larger
than Rlimit. In addition to the exact outage probability, the
Chernoff bound in this case is shown in Fig. 5 as the lines
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Fig. 5. Outage probability versus Kch (K = 3, Nt = Nr = 2d = 2,
Σt = Σr = I, Γ = 15 dB. Transmit and receive beam vectors are designed
by the IIA algorithm in [3].)

with dots and dashes. It is seen that the Chernoff bound is not
very tight but the decaying slope is the same as that of the
exact outage probability.

Figures 6 and 7 show the impact of antenna correlation on
the outage probability. We adopted the exponential antenna
correlation profile considered in [30] and [31]. Under this
model, the (i, j)-th element of the antenna correlation matrix
Σt (or Σr) in (3) is given by ρ|i−j|, where ρ ∈ [0, 1]
is a parameter determining the correlation strength. Since
tr(Σt) = Nt and tr(Σr) = Nr for this exponential antenna
correlation model, we have the same transmit and receive
powers as in the case of no antenna correlation, i.e., Σt = I
and Σr = I. Since the outage probability depends on {Ĥki}
as well as on Σt and Σr, we generated one hundred {Ĥki}
randomly in the way that we explained already, and averaged
the corresponding 100 outage probabilities to see the impact
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Fig. 6. Average outage probability versus Γ (K = 3, Nt = Nr = 2d = 2.
Transmit and receive beam vectors designed by the IIA algorithm in [3].)
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Fig. 7. Average outage probability versus Γ (K = 3, Nt = Nr = 2d = 2,
Rk = 1.2. Transmit and receive beam vectors designed by the IIA algorithm
in [3].)

of the error correlation only. Other aspects of the system
configuration were the same as those for Figures 2 and 5. It is
seen that the error correlation decreases the outage probability
especially when the CSI quality is very bad, but the gain
becomes negligible when the CSI quality is good.

Finally, the performance of the proposed beam design
algorithm maximizing the sum ε-outage rate was evaluated.
As a reference, we adopted the max-SINR algorithm and IIA
algorithm in [3]. Although the max-SINR and IIA algorithms
were originally proposed to design beam vectors with perfect
channel information, we applied the algorithms to design
beam vectors by treating the imperfect channel Ĥ as the
true channel. The ε-outage rate of the max-SINR algorithm
(or the IIA algorithm) is defined as the maximum rate that
can be achieved under the outage constraint of ε using the
beam vectors designed by the max-SINR algorithm (or the IIA
algorithm). Once {Vk} and {Uk} are designed by any design
method for given Σt, Σr and {Ĥki}, the outage probability
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Fig. 8. Sum ε-outage rate for ε = 0.1 (K = 3, Nt = Nr = 2d = 2,
Σt = Σr = I)
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Fig. 9. Sum ε-outage rate for ε = 0.2 (K = 3, Nt = Nr = 2d = 2,
Σt = Σr = I)

corresponding to the designed beam vectors is easily computed
as a function of the target rate Rk from Theorem 1. Thus,
for the beam vectors designed by the max-SINR and IIA
algorithms as well as for those designed by the proposed
design algorithm in Section IV, the ε-outage rate Rk can easily
be obtained. Figures 8 and 9 show the sum ε-outage rate of the
proposed beam design method averaged over thirty different
sets of {Ĥki} for ε = 0.1 and ε = 0.2, respectively, when
K = 3, Nt = Nr = 2d = 2 and Σt = Σr = I for different
Kch’s. (The outage probability expression (31) with the first
40 terms was used to compute the outage probability.) It is
seen that the proposed algorithm outperforms the IIA and max-
SINR algorithms for all SNR, and the max-SINR algorithm
shows good performance almost comparable to the proposed
algorithm at low SNR. However, as SNR increases, the per-
formance of the max-SINR algorithm degrades to that of the
IIA algorithm (the two algorithm themselves converge as SNR
increases) and there is a considerable gain by exploiting the
channel uncertainty.



3572 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 11, NO. 10, OCTOBER 2012

VI. CONCLUSION

In this paper, we have considered the outage probability
and outage-based beam design for MIMO interference chan-
nels. We have derived closed-form expressions for the outage
probability in MIMO interference channels under the assump-
tion of Gaussian-distributed CSI error, and have derived the
asymptotic behavior of the outage probability as a function of
several system parameters based on the Chernoff bound. We
have shown that the outage probability decreases exponentially
w.r.t. the channel K factor defined as the ratio of the power of
the known channel part and that of the unknown channel part.
We have also provided an iterative beam design algorithm
for maximizing the sum outage rate based on the derived
outage probability expressions. Numerical results show that
the proposed beam design method significantly outperforms
conventional methods assuming perfect CSI in the sum outage
rate performance.

APPENDIX

Proof of (13): The (p, q)-th element of Σ(m)
k,i is given by

E{(X(mp)
ki − E{X(mp)

ki })(X(mq)
ki − E{X(mq)

ki })H}
= E{(u(m)H

k Ekiv
(p)
i )(u

(m)H
k Ekiv

(q)
i )H}

(a)
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(m)
k ).

Here, (a) is obtained by applying vec(ABC) = (CT ⊗
A)vec(B) to each of the two terms in the expectation, (b)
is by E{vec(Eki)vec(Eki)

H} = σ2
h(Σ

T
t ⊗ Σr), (c) and (d)

are by (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), and finally (e) is
because v

(p)T
i ΣT

t v
(q)∗
i and u

(m)H
k Σru

(m)
k are scalars. �
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