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Abstract—In this paper, adaptive pilot beam sequence de-
sign for channel estimation in large millimeter-wave (mmWave)
MIMO systems is considered. By exploiting the sparsity of
mmWave MIMO channels with the virtual channel represen-
tation and imposing a Markovian random walk assumption on
the physical movement of the line-of-sight (LOS) and reflection
clusters, it is shown that the sparse channel estimation problem in
large mmWave MIMO systems reduces to a sequential detection
problem that finds the locations and values of the non-zero-
valued bins in a two-dimensional rectangular grid, and the
optimal adaptive pilot design problem can be cast into the
framework of a partially observable Markov decision process
(POMDP). Under the POMDP framework, an optimal adaptive
pilot beam sequence design method is obtained to maximize the
accumulated transmission data rate for a given period of time.
Numerical results are provided to validate our pilot signal design
method and they show that the proposed method yields good
performance.
Index Terms—Millimeter-wave, Large MIMO, Channel esti-

mation, Partially Observable Markov Processes (POMDP)

I. INTRODUCTION

Millimeter-wave (mmWave) communication is rising as a
key technology to provide high data rates with wide bandwidth
(BW) in 5G wireless systems. However, the signal pathloss
in the mmWave band is much larger than that in the lower
band currently used in most wireless access networks. To
overcome the pathloss, there is on-going research about highly
directional beamforming techniques in mmWave systems us-
ing large antenna arrays [1]–[3]. Typically these beamforming
techniques require channel state information (CSI) at the
transmitter and the receiver, but it is more difficult to obtain
CSI in the mmWave band than in the lower band because of the
high propagation directivity and the low signal-to-noise ratio
(SNR) before beamforming. Thus, the accurate and efficient
channel estimation is important to attain the promised BW
gain of the mmWave band.
One of the major differences between the channels in con-

ventional MIMO systems in lower bands and large mmWave
MIMO systems is the sparsity in the MIMO channel.
Whereas channel estimation methods in conventional lower-
band MIMO systems assume rich scattering or the knowledge
of the channel covariance matrix in the rank-deficient case,
such assumptions are not valid in the mmWave band [4].

The authors are with the Dept. of Electrical Engineering, KAIST, Dae-
jeon 305-701, South Korea. E-mail:{jyseo@, ysung@ee., gwlee@, and
dg.kim@}kaist.ac.kr. This work was supported by ICT R&D program of
MSIP/IITP [ 11-911-04-001, Development of Adaptive Beam Multiple Access
Technology without Interference based on Antenna Node Grouping].

Among many possible ray directions resolved by a large
antenna array, only a few directions actually carry the signal,
and these signal-carrying directions are unknown beforehand
[4]. To tackle the challenge of the sparse channel estimation in
the mmWave band, algorithms based on compressed sensing
(CS) have recently been developed [2]–[5]. In [4], the channel
estimation problem is formulated by capturing the sparse na-
ture of the channel, and CS techniques are used to analyze the
sparse channel estimation performance. Recently, an efficient
channel estimation and training beam design method for large
mmWave MIMO systems was proposed based on adaptive CS
in [2], [3]. In the proposed method, the channel estimation is
conducted over multiple slots under the assumption that the
channel does not vary over the considered multiple slots. Each
slot consists of multiple training beam symbol times so that
the sparse recovery is feasible at each slot, and the training
beam at the next slot is adaptively designed depending on the
previous slot observation based on a space bisection approach
[2], [3]. Such a design strategy is a reasonable choice to search
the actual signal-carrying directions in the space. The channel
estimation problem in time-varying sparse MIMO systems was
also considered in [4], [6], where only the time-variation of
the complex path gains was considered in [4] and the time
variation of AoDs and AoAs as well as the complex path
gains were considered in [6].
In this paper, we consider the adaptive pilot beam sequence

design to estimate the sparse channel in large mmWave MIMO
systems based on a decision-theoretical approach, and propose
a strategy to design the pilot beam sequence that is optimal in
a certain sense. Exploiting the sparsity of mmWave channels
with the virtual channel representation and imposing a Marko-
vian random walk assumption on the physical movement of
the LOS and reflection clusters, we cast the sparse channel
estimation problem in large mmWave MIMO systems into the
framework of a partially observable Markov decision process
(POMDP) with finite horizon [7], where we need to find the
locations and values of the non-zero-valued bins in a two-
dimensional rectangular grid. Under the proposed POMDP
framework, we derive an optimal adaptive pilot beam sequence
design method to maximize the accumulated transmission data
rate for a given period of time.

II. SYSTEM MODEL
A. Sparse Channel Modeling in mmWave Systems
We consider a mmWave MIMO system with a uniform

linear array (ULA) of Nt antennas at the transmitter and an
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ULA of Nr antennas at the receiver. The received signal at
symbol time n is given by

yn = Hnxn + nn, n = 1, 2, · · · , (1)

where Hn is the Nr × Nt MIMO channel matrix at time n,
xn is the Nt × 1 transmitted symbol vector at time n with
a power constraint E{xnx

H
n } ≤ Pt, and nn is the Nr × 1

Gaussian noise vector at time n from CN (0, σ2
wINr

). The
MIMO channel matrix Hn can be expressed in terms of the
physical propagation paths as

Hn =
√
NtNr

L∑

�=1

αn,�aRX(θrn,�)a
H
TX(θtn,�), (2)

where αn,� ∼ CN (0, ξ2) is the complex gain of the �-th
path at time n, and θrn,� and θtn,� are the angle-of-arrival
(AoA) and angle-of-departure (AoD) normalized directions of
the �-th path at time n for the receiver and the transmitter,
respectively. Here, the normalized direction θ is related to the
physical angle φ ∈ [−π/2, π/2] as θ = d sin(φ)

λ
, where d is

the spacing between two adjacent antennas and λ is the signal
wavelength (we assume d

λ
= 1

2 ), and aRX(θr) and aTX(θt)
are the receiver response and the transmitter steering vector,
which are defined as [8]

aRX(θr) =
1√
Nr

[1, e−ι2πθr

, · · · , e−ι(Nr−1)2πθr

]T , (3)

aTX(θt) =
1√
Nt

[1, e−ι2πθt

, · · · , e−ι(Nt−1)2πθt

]T . (4)

With neglecting the angle quantization error the physical
MIMO channel matrix Hn can be rewritten in terms of the
virtual channel matrix HV

n [9]:

Hn = ARH
V
nA

H
T , (5)

where AR = [aRX(θ̃r1), · · · , aRX(θ̃rNr
)], θ̃ri = − 1

2 + i−1
Nr

for
i = 1, · · · , Nr, and AT = [aTX(θ̃t1), · · · , aTX(θ̃tNt

)], θ̃tj =

− 1
2 +

j−1
Nt

for j = 1, · · · , Nt. The element in the i-th row and
the j-th column of HV

n indicates the complex channel gain
whose AoA and AoD normalized directions are θ̃ri and θ̃tj ,
respectively. The sparsity in the physical channel model in (2)
is translated into the constraint that HV

n has only L non-zero
elements (i.e.

∑Nt

j=1 ||HV
n (:, j)||0 = L) and L � NtNr for

large Nt.
We assume that the receiver has Nr (� Nt) RF chains so

that it can implement the filter bank AH
R to look ahead for all

possible AoA directions. In this case, the receiver filter-bank
output is given by

y′
n := AH

Ryn = HV
nA

H
T xn + n′

n (6)

where n′
n = AH

Rnn.
By simply transmitting a pilot beam sequence aTX(θ̃t1),

aTX(θ̃t2), · · · , aTX(θ̃tNt
), the receiver can estimate the po-

sitions and values of the L non-zero elements of HV
n if the

channel is time-invariant for Nt symbol times. However, such
a method does not exploit the channel sparsity and/or the
channel dynamic, and is inefficient when Nt is large.

B. The Proposed Dynamic Channel Model

To design a very efficient pilot beam sequence, we exploit
the channel dynamic, and model the channel dynamic by using
a Markovian structure that is different from the Gauss-Markov
or state-space channel model conventionally used to model
the channel dynamic. In large mmWave MIMO systems, the
sparsity should be captured in the channel dynamic. Here,
we focus on the locations of the non-zero elements of HV

n

rather than the values, since the value will be obtained with
reasonable quality once the correct direction is hit by the
pilot beam with high power. Note that each propagation path
is generated by either LOS or a reflection cluster and the
physical movement of the receiver or a reflection cluster can
be modelled as a random walk in space. This random walk
translates into each nonzero bin’s random walk in the virtual
channel matrix. Thus, we assume a stationary block Markovian
random walk for the dynamic of the virtual channel matrix.
That is, the virtual channel matrix HV

(k) at slot k is constant
over the slot and changes to HV

(k+1) at the next slot k + 1
with the aforementioned random walk with a set of transition
probabilities. We also assume that the movement of each path
is independent. Since the receiver checks all possible AoA
directions in parallel, we here only consider the random walk
across AoD, i.e., the column-wise movement of each non-zero
bin in the virtual channel matrix.
1) The Single Path Case: First, consider the single path

case, i.e., L = 1. The single path (or non-zero bin) is located
in a certain column of the virtual channel matrix at slot k, and
stay at the same column or moves to another column of the
virtual channel matrix at slot k+1 according to the explained
random walk. Since we haveNt columns in the virtual channel
matrix, the number N of states for L = 1 is Nt. Let us denote
the set of all possible states by S = {1, 2, · · · , Nt}, where
state i denotes the state that the path is located in the i-th
column of the virtual channel matrix. With the set S of states
defined, the (i, j)-th element of the N × N state transition
probability matrix P is given by

pij = Pr{Sk+1 = j|Sk = i}, i, j ∈ S, (7)

where Sk and Sk+1 denote the states of slots k and k + 1,
respectively. The transition probability matrix captures the
characteristics of the path’s movement behavior and thus it
should carefully be designed by considering the physics of
the receiver and reflection cluster movement, e.g., vehicular
channels or pedestrian channels. In the extreme case of a static
channel, we have P = I, i.e., an identity matrix.
2) The Multiple Path Case: Now consider the multiple

propagation path case, i.e., L ≥ 2. In this case, each path
(or non-zero bin) is located in a column of the virtual channel
matrix. The set S of all possible states is now given by S =
{(i1, i2, · · · , iL), i1, i2, · · · , iL = 1, 2, · · · , Nt}, where state
(i1, · · · , i�, · · · , iL) denotes that the �-th path is located at the
i�-th column of the virtual channel matrix for � = 1, · · · , L
and the cardinality N of S is NL

t . For notational simplicity,
let us also use the following notation:
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Fig. 1. An illustration of a transition of each path when L = 2 and Nt =
Nr = 7.

S = {s(1), s(2), · · · , s(N)}, (8)

where states (i1, · · · , iL), i1, · · · , iL = 1, · · · , Nt, are enu-
merated into states s(i), i = 1, 2, · · · , N = NL

t . We here
allow multiple paths can merge on and diverge from a column
of the virtual matrix. Then the state transition probability in
the L independent path case is given by

Pr{Sk+1 = (j1, · · · , jL)|Sk = (i1, · · · , iL)}
= pi1j1pi2j2 × · · · × piLjL , (9)

where pij denotes the transition probability that a path moves
from the i-th column to the j-th column of the virtual channel
matrix at the next slot and is defined in (7).
Fig. 1 illustrates an example of transitions of the paths when

L = 2 and Nt = Nr = 7. The transition probability of Fig.
1 is p67 × p24 due to the independence assumption for each
path.

C. Channel Sensing with Pilot Beam Sequence
We assume thatMp (L ≤ Mp � Nt) symbol times in each

slot are used for transmitting a sequence of pilot beams and
one column of AT is selected as the pilot beam in each pilot
symbol time. (We assume that highly directional pilot beam
is required to obtain a channel gain estimate with reasonable
quality due to large pathloss in the mmWave band.) Hence,Mp

columns of AT are selected as the pilot beam sequence for the
Mp pilot symbol times per slot. If aTX(θ̃tim) is transmitted as
the pilot signal at the m-th pilot symbol time in the k-th slot,
from (6), the receiver filter-bank output is given by

y′
(k)[m] = HV

(k)(:, im) + n′
(k)[m], (10)

where y′
(k)[m] denotes the receiver filter-bank output at sym-

bol time m of slot k, n′
(k)[m] is similarly defined, and

HV
(k)(:, im) denotes the im-th column of HV

(k). After the
transmission of the sequence of pilot beams for one slot is
finished, the receiver senses and estimates the Mp columns
of HV

(k) corresponding to the Mp pilot beams. Then, the
receiver feeds back the sensing results and estimated channel
gains corresponding to the Mp pilot beam directions to the
transmitter. The process is depicted in Fig. 2.
Now, the problem is to design the sequence of pilot beams

for Mp symbol times for each slot in a certain optimal way.

MpMp

State transition

slot (k) slot (k + 1)

· · ·

· · ·

Feedback

Data transmissionData transmission

A sequence of pilot beams for Mp symbol times
aTX(θ̃ti1 ) aTX(θ̃ti2 )

aTX(θ̃tiMp
)

Fig. 2. The process of the pilot training.

Since Mp � Nt, we can only sense a few columns of HV
(k)

at slot k. Therefore, Mp pilot beams at each slot should be
designed judiciously by exploiting the channel dynamic and
the available information in all the previous slots.

III. POMDP FORMULATION FOR PILOT BEAM DESIGN
FOR SPARSE CHANNEL ESTIMATION

A. Action Space at the Transmitter and Feedback from the
Receiver
In Section II, we assumed that Mp columns of AT are

selected as the pilot beam sequence for the Mp pilot symbols
per slot. This is equivalent to choosing Mp columns of the
virtual channel matrix at each slot to be sensed by the pilot
beam sequence. We denote the selected column indices of the
virtual channel matrix by a = [a1, a2, · · · , aMp

], where am
indicates the index of the column of the virtual channel matrix
that is sensed at symbol time m. (a is referred to as the action
vector.) Hence, there are

(
Nt

Mp

)
possible a’s and the optimal

pilot beam sequence design problem reduces to choosing the
best a at each slot.
After the chosen pilot beam sequence is transmitted to the

receiver, the receiver feeds back the result of detection to the
transmitter for pilot beam sequence design for the next slot.
The feedback information contains the information about the
existence∗ of paths in the selected columns of the virtual chan-
nel matrix as well as the complex gains of the detected paths.
Then, the transmitter uses the channel gain information of the
detected paths for beamforming during the data transmission
period and uses the feedback information about the existence
of paths to choose the pilot beam sequence for the next slot
in an adaptive manner. The latter feedback information can be
modeled as o = [o1, o2, · · · , oMp

] ∈ {0, 1}Mp , where om = 1
indicates that a path is detected by the pilot beam transmitted
at the m-th pilot symbol time, and otherwise om = 0. Since
there exist 2Mp possibilities in o, the feedback information
space is defined as O = [o(1),o(2), · · · ,o(2Mp )]. When the
current state of the virtual channel matrix is s(i) and the action
vector a is selected for the pilot beam sequence for the current
slot, the probability that the transmitter observes the feedback
information o(j) is denoted as qaij , i.e.,

qaij � Pr{o = o(j)|s(i), a} for s(i) ∈ S,o(j) ∈ O. (11)

∗The detection can be wrong. This is another reason for POMDP in addition
to the limited search of Mp columns out of the Nt total columns per slot.
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This probability depends on the detector used to identify the
existence of a non-zero bin in a column at the receiver.

B. Sufficient Statistic
At the beginning of slot k, the information from all the past

slot pilot beam sequences and feedback information can be
summarized as a belief vector:†

πk = [πk,1, πk,2, · · · , πk,N ], (12)

where πk,i is the probability that the state at the beginning of
slot k is state s(i) conditioned on all past pilot beam sequences
and feedback information. It is known that the belief vector is a
sufficient statistic for the action, i.e., the design of the optimal
pilot beam sequence for slot k [10]. The transmitter uses the
belief vector to optimally choose the pilot beam sequence
for slot k that maximizes the expected reward, and updates
the belief vector for the next block based on new feedback
information.

C. The Reward and The Policy
A reward is gained during the data transmission period

according to the accuracy of channel estimation. According to
the objective, there can be several ways to define the reward.
Since we want to track all actual propagation paths in the
sparse mmWave MIMO channel successfully, we define the
reward for each slot as the number of actual propagation paths
(i.e., the number of non-zero bins in the virtual channel matrix)
detected by the selected pilot beam sequence. Since the state
at slot k and the feedback information are unknown at the time
of action, we should consider the expected reward [7]. If the
state of the virtual channel matrix prior to the state transition
at slot k is s(n), then the immediate expected reward at slot
k can be expressed as

R(s(n)
,a) =

N∑
i=1

pni

2Mp∑
j=1

q
a

ij

Mp∑
m=1

N
BIN

s
(i),am

o
(j)
m , (13)

where NBIN
s
(i),am

is the number of non-zero bins in column
am when the virtual channel matrix is in state s(i), o(j)m is
the m-th element of o(j) ‡, and the state transition from s(n)

to all possible s(i) within the slot is captured by
∑N

i=1 pni(·).
Here, the false alarm of the receiver detector does not affect the
immediate reward because in this case o(j)m = 1 but NBIN

s
(i),am

=
0. In the case of miss detection, the opportunity is simply lost.
When the belief vector πk is given at the beginning of slot

k and Sk is the random variable representing the state at the
beginning of the slot, the immediate expected reward at slot
k is given by

R(πk,a) = E{R(Sk,a)|πk}

= 〈R(a),πk〉 (14)

where R(a) = [R(s(1), a), R(s(2), a), · · · , R(s(N), a)], and
〈·, ·〉 denotes the inner product operation.
In the POMDP framework, a policy δ is defined as a

sequence of functions that maps the belief vector to an action

†Note that the belief vector πk is conventionally defined prior to the state
transition for each slot. The belief vector after the state transition can simply
be updated by using the state transition probability matrix.

‡Two paths with the same AoD and different AoAs are considered as two
different paths.

for each slot [10], [11], where the action in our formulation is
the choice of the pilot beam sequence. The optimal policy is
the policy that maximizes the total immediate expected reward
over T slots§ when the initial belief vector π1 at the beginning
of the transmission is given. In other words, the optimal policy
δ∗ is expressed as

δ
∗ = argmax

δ

Eδ

[
T∑

k=1

R(Sk, ak)|π1

]
, (15)

where ak is the action vector at slot k, Eδ is the conditional
expectation when the policy δ is given, and T is the total
number of slots.

IV. THE OPTIMAL AND SUBOPTIMAL STRATEGIES FOR
CHANNEL ESTIMATION

Under the proposed formulation the optimal pilot beam
sequence design problem is equivalent to the problem of
finding the optimal policy that satisfies (15). When the initial
belief vector π1 is given at k = 1, we can define an optimal
value function V (π1) as the maximum total expected reward
by the optimal policy δ∗ :

V (π1) = Eδ∗

[
T∑

k=1

R(Sk,ak)|π1

]
. (16)

Now consider V k(πk) defined as the maximum remaining
expected reward that can be obtained from slot k to slot T
when a belief vector πk is given at the beginning of slot k.
Then, V k(πk) can be decomposed as [12]

V k(πk)

= max
ak

⎧⎨
⎩〈R(ak),πk〉+

2Mp∑
j=1

V k+1(T (πk|o
(j),ak))γ(o

(j) |πk, ak)

⎫⎬
⎭ ,

(17)

where γ(o(j)|πk, ak) =
∑N

i=1 q
ak

ij

∑N

n=1 πk,npni and
T (πk|o(j), ak) is the updated belief vector from πk at slot
k for the next slot after taking action ak and observing o(j).
T (πk|o(j), ak) can easily be computed using Bayes’s formula
as [10], [11]

πk+1 = [πk+1,1, πk+1,2, · · · , πk+1,N ] = T (πk|o(j), ak),

where the i-th element of πk+1 is given by

πk+1,i = Pr{sk = s(i)|o(j), ak,πk}

=
qak

ij

∑N

n=1 πk,npni
∑N

i=1 q
ak

ij

∑N

n=1 πk,npni
. (18)

The optimal policy δ∗ over the considered transmission
period k = [1, 2, · · · , T ] can be computed via the recursion
(17) from backward once the state transition probability P,
reward, and observation and action spaces are given [10], [11],
[13]. This computation can be done off-line and the optimal
policy can be stored beforehand.¶ Then, in actual transmission,

§Such a formulation is called a finite-horizon POMDP. The formulation
here can be modified to the infinite-horizon case.

¶Hence, for each channel type, we can pre-compute the policy and store
it. This is one of the main advantages of the proposed pilot beam design
approach.
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Fig. 3. NMSE performance comparison for (Nt = 8, Nr = 4,Mp =
6, L = 1) and (Nt = 16, Nr = 4,Mp = 12, L = 2)

we start from k = 1 with π1 and repeat action and observation.
The complexity of this actual operation is insignificant.
As the number of states and the size of the action space

increase, obtaining the optimal policy for the POMDP prob-
lem requires high complexity. To reduce the computational
complexity, we can use point-based POMDP value iteration
algorithms proposed in [14]–[16]. Alternatively, to reduce the
complexity, we can simply use the greedy policy that considers
only the immediate expected reward at each slot.

V. NUMERICAL RESULTS
In this section, we provide some numerical results to

evaluate the performance of the proposed pilot beam design
and channel estimation method for sparse mmWave channels.
Throughout the simulation, we neglected the quantized angle
error and assumed a static channel, i.e., P = I so that
algorithms developed for static channels can be applied for
comparison. The receiver uses a Neyman-Person detector for
sensing the paths, and the noise power at the receiver side
is σ2

w = 1. SNR is the transmit power for one symbol time
relative to the noise power before beamforming.
We compared the performance of the proposed POMDP

strategy, the random beam selection strategy, and the CS
technique based on a space bisection approach in [3]. In the
random pilot beam selection strategy, one of

(
Nt

Mp

)
possible

pilot beam sequences is randomly selected to sense the channel
at each slot. Fig. 3 shows the performance of the considered
methods at two mmWave MIMO scenarios. The channel
estimation performance was measured by the normalized mean
square error (NMSE). In each MIMO system scenario, we set
the number of the symbol times for channel estimation (i.e.,
Mp) as the smallest number of symbol times needed for the
CS technique based on a space bisection approach in [3] (i.e.,
Mp = 2L log2(Nt/L)).
It is shown in Fig. 3 that the POMDP strategy significantly

outperforms the random pilot beam selection strategy, and the
POMDP strategy has better performance than the CS technique
in [3] at the low SNR region, whereas the trend switches at
the high SNR region. This is because the transmit power is

scattered in the CS technique, whereas the transmit power is
concentrated by pilot beamforming in the POMDP strategy.
This yields better performance for the POMDP strategy at the
low SNR region.

VI. CONCLUSION
We have considered the pilot beam sequence design for

sparse large mmWave MIMO channels. We have shown that
the pilot beam design problem can be formulated as a POMDP
problem by exploiting the sparse channel dynamic and have
obtained the optimal strategy and a greedy strategy for pilot
beam sequence design. The proposed pilot design method can
be used to estimate the channel initially at the beginning of the
transmission or to track the channel once the sparse channel
locations are identified with some other method. For the initial
channel identification purpose, the proposed algorithm can be
modified by considering a superposed pilot beam for a pilot
symbol time with adaptive resolution over slots to shorten the
time for initial path location identification.
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