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Abstract—In this letter, the pilot signal design for mas-
sive MIMO systems to maximize the training-based received
signal-to-noise ratio (SNR) is considered under two channel
models: block Gauss-Markov and block independent and iden-
tically distributed (i.i.d.) channel models. First, it is shown that
under the block Gauss-Markov channel model, the optimal pilot
design problem reduces to a semi-definite programming (SDP)
problem, which can be solved numerically by a standard convex
optimization tool. Second, under the block i.i.d. channel model, an
optimal solution is obtained in closed form. Numerical results show
that the proposed method yields noticeably better performance
than other existing pilot design methods in terms of received SNR.

Index Terms—Channel estimation, Gauss–Markov model,
Kalman filter, massive MIMO, pilot design.

I. INTRODUCTION

E FFICIENT channel estimation is a crucial problem for
massive multiple-input multiple-output (MIMO) sys-

tems [1] and there is active research going on in this area
[1]–[4]. While much research is conducted on time-division
duplexing (TDD) massive MIMO systems [1]–[4], recently
some researchers considered the problem of efficient channel
estimation and pilot signal design for more challenging fre-
quency-division duplexing (FDD) massive MIMO systems in
which the number of channel parameters to estimate may be
much larger than the resource allocated to training. To quickly
acquire a reasonable channel estimate with limited training
resources, the authors in [5]–[7] exploited the channel spatial
and temporal correlation under the framework of Kalman
filtering with the state-space channel model. In particular, the
authors in [5], [6] considered the pilot signal design under the
state-space (i.e., Gauss-Markov) channel model to minimize
the channel estimation error, and showed that the channel can
be estimated efficiently by properly designing the pilot signal
and exploiting the channel statistics. However, minimizing the
channel estimation error is not the ultimate metric of data com-
munication. Hence, in this letter, we consider the optimal pilot
signal design under the framework of the state-space channel
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model to maximize the received SNR1for data transmission,
which is sometimes a final goal of data communication.
Notation: We will make use of standard notational conven-

tions. Vectors and matrices are written in boldface with ma-
trices in capitals. All vectors are column vectors. For a matrix
, , , , , , , and in-

dicate the transpose, conjugate transpose, inverse, trace, rank,
-th largest eigenvalue, and -th element of , respectively.

denotes the linear subspace spanned by the columns of
, and is the orthogonal complement of . For

a random vector , denotes the expectation of , and
means that is circularly-symmetric com-

plex Gaussian-distributed with mean and covariance matrix
. and denote an identity matrix and an all-zero matrix,
respectively.

II. SYSTEM MODEL AND BACKGROUND

In this letter, we consider the same massive MISO system as
that considered in [5], [7], [10]. The transmitter has transmit
antennas, the receiver has a single receive antenna ( ),
and each transmit-receive antenna pair has flat fading. Under
this model the received signal at symbol time is given by

(1)

where is the transmit signal vector at symbol
time , is the channel vector at symbol time ,
and is the additive Gaussian noise at symbol time from

with the noise variance . For the channel
model, we assume the stationary2 block Gauss-Markov vector
process [5], [7]. That is, the channel vector is constant over
one block and changes to a different state at the next block
according to the following model:

(2)

where is the channel vector for the -th block, is

the temporal fading coefficient, and is the
innovation vector at the -th block independent of .
We assume that one block consists of symbols: The first
symbols are used for training and the following

1In the multiple-input single-output MISO case, the training-based capacity
is a monotone increasing function of the training-based received SNR [8]. A
training approach based on received SNRwas considered in the context of feed-
back in [7], [9]. The difference of this letter from [7], [9] is that we here ob-
tained an optimal pilot signal under the state-space channel model based on the
training-based received SNR defined in [8], which is different from the SNR
definition used in [7].
2We assume that stationarity holds at least locally [11], [12]. That is, the

channel statistics vary much slowly than channel’s fast fading.
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symbols are used for unknown data transmission. Thus, we have
for . It is easy to verify

the assumed time-wise stationarity, i.e.,
, for the considered channel parameter setup.

captures the spatial correlation of the channel and depends
on the antenna geometry and the scattering environment [13].
We assume that and are known to the system. (Please see
[5] regarding this assumption.) Let be the eigen-
decomposition of , where is a matrix composed
of orthonormal columns and the matrix contains all
the non-zero eigenvalues of , i.e., is the rank of . Since
all are contained in the same subspace ,
we can model the -th block channel as because of
the assumed stationarity. Then, the channel dynamic (2) can be
rewritten in terms of as

(3)

with . (This random vector process is again a
stationary process with for all ).
By stacking the symbol-wise received signal in (1) corre-

sponding to the training period of each block, we have

(4)

where ,
, and .

The total power allocated to the training period of each block
is given by , which means that each pilot
symbol has power on average. Since , there is no
loss in setting because the signal power allocated
to will simply be lost without affecting the received
signal . Hence, we have

(5)

where is a matrix and we assume , i.e., the
number of symbols contained in one channel coherence time
is smaller than the channel rank as in typical massive MIMO
systems. Then, the measurement model (4) is rewritten as

(6)

and the power constraint on is given by
. Thus, the original state-space model (2) and

(4) is equivalent to the new model (3) and (6) under the known
stationary subspace condition . Under the state-space
model (3) and (6), the optimal minimum mean-square-error
(MMSE) channel estimation is given by Kalman filtering
[14]. That is, the MMSE estimate and its estimation error
covariance matrix are updated as follows [14]:

(7)

where ,
, , and .

III. PROBLEM FORMULATION

In this section, we consider the pilot design problem to max-
imize the received SNR for the data transmission period under
the assumption that and are given and the transmit beam-
forming is used for the considered MISO channel during the
data transmission period, i.e.,

(8)

where and are the transmit beamforming vector and data
symbol for symbol time . Here, we assume and

. From here on, we set for simplicity.
Again due to , we can set without any
performance loss. From now on, we use instead of for

. First, following the framework in
[8], we derive the received SNR during the data transmission
period. The true channel at symbol time is expressed as

(9)

where is the block number corresponding to symbol time
, with obtained from (7)

is the MMSE estimate for (this is true be-
cause

), and
is the channel estimation error. Substituting (8) and (9) into (1),
we have

(10)

The key point in [8] is that in the right-hand side (RHS) of (10),
the term is known to the receiver and the terms

and are unknown. Hence, the training-based
received SNR is defined as [5], [8]

(11)

where , since . The op-
timal beamforming vector that maximizes is given by
solving a generalized eigenvalue problem. In general, a closed-
form solution to a generalized eigenvalue problem is not avail-
able. However, since the rank of in the numer-
ator of the RHS of (11) is one, one can easily solve the problem
in this case, and the optimal beamforming vector and the
corresponding optimal are given by

(12)

(13)

Note that the optimal received SNR is the same for all data sym-
bols , of each block. Hence, we
shall use the notation for . Also, note from (13)
that the optimal SNR is a function of symbol SNR , the error
covariance matrix and the channel estimate .
Hence, simply minimizing the trace of may not be op-
timal to maximize the received SNR due to the term .
Using the fact that both and are functions of
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the pilot signal , as seen in (7), we can express the optimal
as a function of , given by

(14)

Our goal is to design the sequence of pilot
matrices to maximize . However, is a function of
all previous pilot signal matrices via and , and the
design problem is a complicated joint problem. Thus, as in [5],
[10], we adopt the greedy sequential approach and the design
problem is explicitly formulated as follows.
Problem 1: Given the channel statistics information, and
, and all previous pilot matrices , design
such that

subject to
(15)

Here, the expectation in (15) is to average out the randomness
in the random vector .

IV. THE PROPOSED DESIGN METHOD

To solve Problem 1, we begin with the following proposition.
Proposition 1: The pilot design problem (15) is equivalent to

the following optimization problem:

subject to
(16)

where and .

Note that and are not functions of the design variable .
Proof: From (13) the average received SNR, ,

with the optimal beamforming vector can be expressed as

(17)

Since is a Gaussian random vector with mean and
covariance matrix given by

(18)

where the second equality holds by the matrix inversion lemma,
is given by

(19)

The error covariance matrix is expressed as

(20)

Substituting (19) and (20) to (17), we have

(21)

Here, we used and .
Since the first term of the RHS of (21) is independent of and
the second term of the RHS of (21) is
with and defined in the proposition, the problem (15) is
equivalent to the problem (16).
Note that the problem (16) is not a convex optimization

problem. To tackle the problem (16), we use the semi-definite
relaxation (SDR) technique [15]. First, introducing a new vari-
able , we change the optimization problem (16) as

subject to (22)

Then, dropping the rank constraint in the problem (22), we
change the problem to the following optimization problem:

subject to (23)

Since and are positive-definite matrices, the problem (23)
is a convex optimization problem and can be solved by a stan-
dard convex optimization solver. To obtain a solution matrix
of size from the solution of (23), we use a random-
ization technique. That is, we generate i.i.d. random vectors
according to the distribution . After the generation
of these random vectors, we stack the vectors to make a
matrix . Since and can be obtained by the standard
Kalman recursion, only solving the problem (23) and applying
the randomization technique are additionally necessary to de-
sign the received-SNR-optimized pilot sequence.

A. The Block I. I. D. Channel Case

The block i.i.d. channel case [13] is a special case of the
model (2) or (3) with . Under this model, the Kalman
recursion (7) is still valid although the recursion does not prop-
agate, i.e., and for every . Hence,
Proposition 1 is valid under the block i.i.d. channel model. In
this case, is a diagonal matrix and thus, the matrices
and in Proposition 1 are diagonal. In this case, the opti-

mization problem (16) can be solved efficiently without solving
(22) based on the following proposition.
Proposition 2: There exists an optimal solution to the

problem (16) in the form of , where is a
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permutation matrix and is a “diagonal” matrix in
the form of

. . . (24)

when and are diagonal matrices.
Proof: The proof is similar to that of [13, Theorem 3].

Since is a positive definite matrix, the objective function of
the problem (16) can be rewritten as

(25)

where . Let

, and
. Then, the objective

function (25) can be rewritten as ,
since the trace of a matrix is the sum of its eigenvalues. It is
shown in [13, Theorem 3] that is lower bounded by

, i.e. , based on the Schur con-
vexity of . This lower bound can be achieved when is a
diagonal matrix. To make a diagonal matrix,
should be a diagonal matrix, since and are diagonal
matrices. Therefore, the minimum value of the objective func-
tion can be achieved when is a diagonal matrix. By
decomposing the diagonal matrix of rank
less than or equal to , we have a solution to (16) in the form
of . (The locations of the non-zero elements of
determine .)
Using Proposition 2, the Lagrange multiplier technique and

the fact that , we obtain the optimal
diagonal elements of given by

(26)

(27)

Since the object function in (16) can be rewritten as
and the term is a monotone in-

creasing function of , the indices with the smallest
values should be selected for possibly non-zero

’s. Let this index set be denoted by . Then, the La-
grange multiplier is obtained to satisfy the power constraint

by the bisection method. The proposed
index selection here corresponds to selecting the dominant
eigen-directions of since .
Interestingly, this index selection method coincides with the
result in [13] minimizing the channel estimation MSE. (The
channel estimation MSE minimizing problem is equivalent to
(16) with redefined and .) In both received
SNR maximization and channel estimation MSE minimization,
the dominant channel eigen-directions should be used for
pilot patterns, but the power allocation is a bit different.
Remark 1: By Proposition 2, in MISO systems with the

block i.i.d. channel model, a received-SNR-optimal pilot signal
is given by . Hence, there is no need to mix mul-
tiple channel eigen-directions at a symbol time to improve the
performance. At each symbol time, it is sufficient to use one

Fig. 1. NMSE and received SNR versus block index : , ,
dB, dB, and km/h.

column of . On the other hand, in the block-correlated channel
case ( ), the optimal solution to (22) is not diagonal in
general and thus, mixing multiple channel eigen-directions at a
symbol time can improve the received SNR performance.

V. NUMERICAL RESULT

In this section, we provide some numerical results to eval-
uate our pilot design method. We set 2 GHz carrier frequency,

s symbol duration, block size with three
training symbols per block ( ), and the pedestrian mobile
speed km/h . (The temporal fading coef-
ficient is given by by Jakes’ model [16],
where is the maximum doppler frequency and is the 0-th
order Bessel function.) For the channel spatial correlation ma-
trix , we consider the exponential correlation model given
by with .
Fig. 1 shows the performance of the proposed pilot design,

when dB and . The normalized MSE

(NMSE) is defined as . The result is averaged over
100 random realizations of the channel process with length 40
blocks. For comparison, we consider orthogonal and random
beam patterns for . In addition, we consider the pilot
design algorithms minimizing the channel estimation MSE in
[5], [6]. It is seen that the proposed method noticeably outper-
forms other methods in terms of received SNR and especially
yields quick convergence at the early stage of channel learning,
although its MSE performance is worse than the methods in [5],
[6]. Although the result is not shown here due to space limita-
tion, it is observed in the block i.i.d. channel case that the pro-
posed pilot design method in Section 4.1 yields slightly better
performance than the method in [13] in terms of received SNR.

VI. CONCLUSION

In this letter, we have considered the pilot signal design for
massive MIMO systems to maximize the received SNR under
the block Gauss-Markov and block i.i.d. channel models. We
have shown that the proposed design method yields noticeably
better performance in terms of received SNR than channel esti-
mation MSE-based methods. Furthermore, we have shown that
using the dominant eigen-vectors of the channel covariance
matrix without mixing as the pilot signal provides an optimal
solution even for received SNR maximization under the block
i.i.d. channel model. The extension to the MIMO case is left as
future work.
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