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Abstract—In this paper, index coding problems in which the
number (m) of receivers is larger than that (n) of data are
considered. Unlike the case that the two numbers are same
(n = m), index coding problems with n ≤ m are more general
and hard to handle. To circumvent this difficulty, problems with
n < m are approached via corresponding problems with n = m.
It is shown that in certain cases, the symmetric capacity and
code construction for index coding problems with n < m can be
obtained from the existing symmetric capacity result and codes
for index coding problems with n = m. Such cases include cases
with n < m ≤ 5.

I. INTRODUCTION

Recently, the source coding problem with a broadcast
channel with multiple receivers that have side information
has drawn much attention from the research community since
the problem, named Informed Source Coding On Demand
(ISCOD), was first introduced by Birk and Kol [1]. In ISCOD,
a transmitter wants to deliver data to receivers by using a
broadcast channel with minimum required transmission time,
under the assumption that each receiver requires a part of the
data and has some side information about the data, and the
transmitter knows what side information each receiver has. The
problem is often referred to as index coding. Index coding has
many applications in distributed systems such as distributed
storage, satellite communications, network coding, video on
demand, cellular networks, etc. [2]
The considered index coding problem in this paper is

formally defined as follows.
Definition 1: A transmitter sends a data set X =

{x1, x2, · · · , xn : xi ∈ {0, 1}, ∀i} to m receivers
r1, r2, · · · , rm by using a broadcast channel. Here, each
receiver ri requires X [f(i)] := {xj |j ∈ f(i)}, where f(i) ⊂
[n] := {1, · · · , n} is the index set of the required data for re-
ceiver i, and has side informationX [N(i)] := {xj|j ∈ N(i)},
where N(i) ⊂ [n] is the index set for the side information for
receiver i. The function E(X, {N(·)}) : (0, 1)n → (0, 1)l is
an index code of length l if E(X, {N(·)}) is decodable in the
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sense that every receiver ri satisfies the following condition:

H(X [f(i)]|E(X, {N(·)}), X [N(i)]) = 0 at ri,

where H(·) is the entropy function. E(X) shall be used for
E(X, {N(·)}) for simplicity.
Mostly, the index coding problem has been considered in the
case in which n = m and f(1), · · · , f(m) is a partition of [n]
with |f(i)| = 1, ∀ i [1], [3]–[5]. (We refer to this case as C1.)
However, one needs to handle general cases with n �= m to
accommodate various system setup. An index coding problem
in the case of n > m and f(i) ∩ f(j) = ∅ for i �= j can
trivially be converted to a corresponding problem in the case
of n = m and |f(i)| = 1, ∀ i by adding virtual receivers and
properly assigning side information for the virtual receivers
[1]. However, the case of n < m is not as simple as the
case of n > m. (We refer to the case of n < m and
|f(i)| = 1 , ∀i as C2. Hereafter, we shall use Pi (i = 1, 2)
to represent a particular index coding problem belonging to
the case Ci.) Recently, Lubetzky and Stav considered the case
C2 and obtained a lower bound on the minimum length of
index coding for P2 by considering a P1 properly constructed
from the original index coding problem P2 [6].
In this paper, we investigate the general case C2 further, and

obtain some new results regarding the general case C2.
• First, we show that for a given P2, ��(P2) =

��(P1(Gcl(P2))) in the case that each datum xi is
required by less than three receivers if linear coding is
optimal for P1(Gcl(P2)). Here, Gcl(P2) is a directed
graph properly constructed from P2 as in [6], and P1(G)
is the C1-index coding problem equivalent to a directed
graph G. (See [1] for the equivalence between G and
P1(G).) ��(·) is the minimum index code length of the
corresponding problem. In this case, a known algorithm
for P1(Gcl(P2)) can be used to solve the original P2.
(See Lemma 2 and Remark 1 in Appendix.)

• Second, we further identify certain situations under which
��(P2) = ��(P1(Gcl(P2))).

• Third, based on the existing symmetric capacity result for
C1 with n = m ≤ 5 [4], ��(P2) ≥ ��(P1(Gcl(P2))) [6],
and our new result, we compute the symmetric capacity
for C2 with n < m ≤ 5. In the case to which the first
result in the above applies, the above result simply yields
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the desired result. In other cases, we numerically verify
that ��(P2) = ��(P1(Gcl(P2))) when n < m ≤ 5.

• Finally, we provide an example for which ��L(P2) >

��L(P1(Gcl(P2))). Note that ��(P2) ≥ ��(P1(Gcl(P2)))
by Lubetzky and Stav [6]. See Definition 2 for ��L(·).

A. Related Work
In [1], the authors showed that considering the case of a

single requested data symbol per a receiver is enough, which
means considering the case of n ≤ m and |f(i)| = 1, ∀ i

is enough, by adding virtual receivers and properly assigning
side information for the virtual receivers. In [3], the authors
considered the scalar linear index coding for C1, and showed
that in this case, a P1 can be represented by a directed graph
G(V,E) and the optimal index code length of P1 is given
by a graph parameter of G(V,E). In addition, the authors
identified certain cases in which linear index coding is optimal,
and such cases include directed acyclic graphs, perfect graphs,
odd cycles and odd anti-holes, etc. However, in [6], Lubetzky
and Stav showed that there exist certain cases in which non-
linear index coding strictly outperforms linear index coding. In
[4], Arbabjolfaei et al. obtained the capacity region for index
coding with up to five receivers for C1. By using this result and
setting all user rates the same, one can obtain the symmetric
capacity for C1 with up to five receivers. In [7], the authors
considered the case of C2 and showed that a bipartite graph
can be used to represent a P2.

B. Background
We here provide some definitions and background for later

sections.
Definition 2 (��(P), ��L(P)): Consider an index coding

problem P . The minimum length of an index code for P and
the minimum length of a linear index code for P are denoted
by ��(P) and ��L(P), respectively.
First, consider the case C1. For simplicity, we assume that
f(i) = i in this case. A C1-index coding problem P1 can
be represented by a directed graph G = (V,E), where V is
a vertex set and E is an edge set [1]. The directed graph
corresponding to P1 is constructed as follows: [1]
1) The vertex set V is given by V = [n], where vertex i

represents ri and xi.
2) (i, j) ∈ E if and only if ri knows the datum xj .
In this way, a directed graph G with n nodes is equivalent
to an index coding problem P1 [1]. Here, we will use P1(G)
(or simply G when no ambiguity) for the C1-index coding
problem equivalent to a directed graph G. It is shown in [3]
that ��L(G) = minrk2(G), where the minrk2(G) is defined as
the minimum rank of a matrix fitting G. An n × n binary
matrix A fits a graph G(V,E) with |V | = n if A(i, i) = 1
for all i; A(i, j) = 0 if (i, j) �∈ E; and A(i, j) = 0 or 1
if (i, j) ∈ E. We denote the set of all matrices fitting G by
M(G) or M(P1(G)).
Next, consider the case C2. Handling C2 is more difficult

than handling C1 for several reasons. For example, a C2-index
coding problem P2 cannot be represented by a directed graph

with equivalence. However, it is shown that it is convenient to
express a P2 as a matrix in a similar way to the case C1 [6].
Define a matrix setM(P2) for P2 as follows: [6] A ∈ M(P2)
if
1) A is a m× n matrix;
2) A(i, j) = 1 for all (i, j) with j ∈ f(i); and
3) A(i, j) = 0 for all (i, j) with j �∈ N(i).
It is shown in [6] that ��L(P2) = minA∈M(P2) rank2(A).
Furthermore, in [6], an m-vertex directed graph Gcl(P2) is
constructed to capture several properties of P2. The graph
Gcl(P2) = (V,E) is constructed from P2 as follows: [6]
1) The set V of m vertices is given by V = [m]. Vertex i

represents receiver ri.
2) (i, j) ∈ E if and only if ri knows datum xf(j) or ri and

rj require the same datum.
In Gcl(P2), a set of receivers that require the same datum
forms a clique in the graph Gcl(P2). Let the clique composed
of the receivers that require xi be denoted by ci. We will
consider that a clique of one node is not a clique (although
trivial cliques of size one are considered as cliques in general).
This means |ci| ≥ 2 in this paper.
Now, consider an example C2-index coding problem IEX :

X = {x1, x2, x3}, R = {r1, r2, r3, r4, r5}, f(1) = f(4) =
f(5) = 1, f(2) = 2, f(3) = 3 and N(1) = {2},
N(2) = {1}, N(3) = {2}, N(4) = {3}, N(5) = ∅. The
matrix representation for IEX is given by

M(IEX) =

⎡
⎢⎢⎢⎢⎣

1 ∗ 0
∗ 1 0
0 ∗ 1
1 0 ∗
1 0 0

⎤
⎥⎥⎥⎥⎦
, (1)

where ∗ indicates that the corresponding value can be either
0 or 1. Note that, the columns and rows in M(IEX) in
(1) represent the data and the receivers, respectively. That
is, the columns 1, 2 and 3 represent x1, x2 and x3, re-
spectively, and the rows 1, 2, 3, 4 and 5 represent r1,
r2, r3, r4 and r5, respectively. Now, consider the C1-index
coding problem P1(Gcl(IEX)) corresponding to the directed
graph Gcl(IEX). The matrix representation of P1(Gcl(IEX))
denoted by M(P1(Gcl(IEX))) is given by

M(P1(Gcl(IEX))) =

⎡
⎢⎢⎢⎢⎣

1 ∗ 0 ∗ ∗
∗ 1 0 ∗ ∗
0 ∗ 1 0 0
∗ 0 ∗ 1 ∗
∗ 0 0 ∗ 1

⎤
⎥⎥⎥⎥⎦
. (2)

By the definition of Gcl(IEX) and x1 = xf(1) = xf(4) =
xf(5), receivers r1, r4 and r5 form a clique c1. Thus,
M(P1(Gcl(IEX))) has ∗ in the positions (1, 4), (1, 5), (4, 1),
(4, 5), (5, 1) and (5, 4) in (2). Since N(2) = {1}, receiver
r2 knows x1(= xf(1) = xf(4) = xf(5)). This implies
that M(P1(Gcl(IEX))) has ∗ in the positions (2, 1), (2, 4)
and (2, 5) in (2). Since N(3) = {2}, receiver r3 does not
know x1(= xf(1) = xf(4) = xf(5)). This implies that
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M(P1(Gcl(IEX))) has 0 in the positions (3, 1), (3, 4) and
(3, 5) and has ∗ in the position (3, 2). Similarly, we can
incorporate N(1), N(4) and N(5). Note that the columns 1,
4 and 5 corresponding to the clique c1 of receivers 1, 4 and
5 requiring the same datum x1 will become the same if 1 is
replaced by ∗. This is true even in general cases. (This fact
can be used to identify if a given P1 can be derived from
P2(’s) by Gcl.) Therefore, in general C2 with n < m and
|f(i)| = 1, ∀i, at least two receivers require the same datum
and thus there exist at least two columns in M(P1(Gcl(P2)))
that will become the same if 1 is replaced by ∗.
In [6], it is shown that ��(P1(Gcl(P2))) is a lower bound

of ��(P2), i.e., ��(P2) ≥ ��(P1(Gcl(P2))). The optimal
broadcast rate of an index coding problem P is not ��(P),
since �� is the minimum length obtained with the constraint
that the length of data is limited as 1. We refer to an index
code with the length of data being one as a scalar index code.
In general, the vector index code with vector size t is defined
as follows:
Definition 3: A transmitter sends a data set X =

{x1, x2, · · · , xn : xi ∈ {0, 1}t, ∀i} to m receivers
r1, r2, · · · , rm by using a broadcast channel. The function
E(X) : (0, 1)tn → (0, 1)l is a vector index code of length
l with vector size t if E(X) is decodable in the sense that
every receiver ri satisfies the following condition:

H(X [f(i)]|E(X), X [N(i)]) = 0 at ri,

where f(i), N(i) and X [N(i)] are defined in Definition 1.
By using vector index code, the optimal broadcast rate of

an index coding problem is defined as follows:
Definition 4 (βt(P),β(P)): [8] Consider an index coding

problem P . Let the minimum length of a vector index code with
vector size t for P be βt(P). Then, the optimal broadcast rate
of the index coding problem P is defined as

β(P) := lim
t→∞

βt(P)

t
. (3)

The symmetric capacity of an index coding problem P is the
inverse of optimal broadcast rate, i.e., 1

β(P) .

II. NEW RESULTS ON THE ASYMMETRIC CASE C2
In this section, we provide some new results on the asym-

metric case C2. The first result is provided in the following
theorem.
Theorem 1: For a C2-index coding problem P2, construct

a directed graph Gcl(P2), as mentioned in Section I-B. Then,
��(P2) = ��(P1(Gcl(P2))) if all ci’s in Gcl(P2) have size
less than or equal to 2 and if linear index coding is optimal
for P1(Gcl(P2)) constructed from P2.
Note that Theorem 1 is a refined result of the result

��(P2) ≥ ��(P1(Gcl(P2))) in [6]. To prove Theorem 1, we
introduce the following lemma.
Lemma 1: Consider a C2-index coding problem I1 with the

restriction that each datum xi is required by only one or two
receivers. Without loss of generality, I1 is defined as follows.

1) Data set X = {x1, · · · , xn}.
2) Receiver set R = {r1, · · · , rm}.

3) Required data f(i) =

⎧⎨
⎩

i, for 1 ≤ i ≤ n,

1, for i = n+ 1,
ji(�= 1), otherwise.

4) Side information index set N = {N(1), · · · , N(m)}.
Define another index coding problem I2 from I1.
1) Data set X ′ = {x1, · · · , xn, xn+1}.
2) Receiver set R′ = {r′1, · · · , r

′
m}.

3) Required data f ′(i) =

⎧⎨
⎩

i, for 1 ≤ i ≤ n,

n+ 1, for i = n+ 1,
ji(�= 1), otherwise.

4) Side information index set N ′ = {N ′(1), · · · , N ′(m)},
where N ′(i) is defined as

N ′(i) :=

⎧⎨
⎩

N(i) ∪ {n+ 1}, if 1 ∈ N(i) or f ′(i) = 1,
N(i) ∪ {1}, if f ′(i) = n+ 1,
N(i), otherwise.

(See Fig. 1 for an example.) Then, ��(I1) = ��(I2) if there
exists an optimal index code E(X ′) for I2, that satisfies

H(xj |E(X ′), X ′[N(i)]) = 0 or 1, ∀i, j ∈ [n]. (4)

Proof: See Appendix. �

x1x1 x2x2 x3

r1

N(1),

r2

1 ∈ N(2),

r3

N(3)

r′
1

3 ∈ N ′(1),

r′
2

{1, 3} ⊂ N ′(2),

r′
3

1 ∈ N ′(3)

E1({x1, x2}) E1({x1 ⊕ x3, x2})

Fig. 1. An example of I1 and I2 for n = 2 and m = 3

Now, we prove proof of Theorem 1.
Proof of Theorem 1: First, reorder the indices of data and

receivers of P2 to obtain I1. (This does not change the prob-
lem.) Then, obtain I2 according to the construction described
in Lemma 1. If I2 is not a C1-index coding problem, obtain
I3 from I2 again according to the construction described
in Lemma 1 by setting I2 in the first construction as I1
in the second construction. Iterate this procedure until we
have Im−n+1. One can easily see that the last Im−n+1 is
the index-reordered version of P1(Gcl(P2)). By the linear
optimality assumption in Theorem 1, the assumption (4) of
Lemma 1 is valid to apply Lemma 1 to Im−n and Im−n+1.
By Lemma 1 applied to Im−n and Im−n+1 = P1(Gcl(P2)),
��(Im−n) = ��(Im−n+1) and by Lemma 2, there exist a linear
optimal code for Im−n with length ��(Im−n) = ��(Im−n+1)
constructed from the assumed linear optimal code for Im−n+1

according to Remark 1. Now consider Im−n−1 and Im−n and
apply Lemma 1 again. Iterate this procedure until we have
P2 = I1 and I2. Then, we have ��(P2) = ��(I1) = ��(I2) =
· · · = ��(Im−n+1) = ��(P1(Gcl(P2))). Furthermore, an
optimal linear code P2 is constructed from an optimal linear
code for P1(Gcl(P2)) through this process. �
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In [4], the capacity region of any index coding problem with
n = m ≤ 5 is obtained. By setting the rate for each receiver
the same, their capacity region result yields the symmetric
capacity, which is the inverse of the optimal broadcast rate β
defined in Definition 4. The obtained symmetric capacity result
in the case of n = m ≤ 5 in [4] can be used to obtain the sym-
metric capacity in the case of n < m ≤ 5, based on Theorem
1 and the result ��(P2) ≥ ��(P1(Gcl(P2))) by Lubetzky and
Stav [6]. There exist 9846 non-isomorphic C1-index coding
problems with n = m ≤ 5 [4]. (The symmetric capacity of
each of the 9846 problems is known due to [4].) By numerical
study, we verified that for 9818 problems out of the total 9846
problems the symmetric capacity is achieved by simple scalar
linear coding, whereas for the remaining 28 problems simple
scalar linear coding is not sufficient. Among the total 9846 C1-
problems, 3018 problems are P1(Gcl(P2)) for some P2 (we
can identify this based on the properties of Gcl(P2) described
in Section I-B), that is, each of them is a C1-problem corre-
sponding to a directed graph Gcl(P2) generated from some
P2 as described in Section I-B. Among the 28 C1-problems
for which simple scalar linear coding is not sufficient, only 6
problems are P1(Gcl(P2)) for some P2. We verified that the
symmetric capacity of each of these 6 C1-problems (known
by [4]) is achieved by vector linear coding with length t = 2.
For each of the 3018 C1-problems to which one or more
C2-problem(s) map(s) through the Gcl operation, we traced
back all the corresponding C2-problem(s) P2(’s). In this way,
we covered all C2-problems {P2} with n < m ≤ 5. (This
paper has supplementary downloadable material available
at http://wisrl.kaist.ac.kr/papers/Num14ISITSoKwakSung.zip
provided by the authors.)
Case 1: If Gcl(P2) have only size 2 cliques with n = m ≤

5, we have β(P2) = β(P1(Gcl(P2))) by Theorem 1 since for
any P1 with n = m ≤ 5 linear index coding is sufficient.
Case 2: If Gcl(P2) has ci whose size is more than 2,

M(Gcl(P2)) should have 3 or more columns that are the same
after replacing 1 with ∗ (see Section I-B). In this case, we
verified numerically that there exists a scalar linear index code
for P2 that achieves β(P1(Gcl(P2))). (Again, β(P1) is known
by [4].)
Case 3: For P2 corresponding (by Gcl) to each of the 6

C1-problems for which vector linear coding with length 2 is
optimal, we observed that each datum is required by one or
two receivers. Hence, Theorem 1 applies and we have β(P2) =
β(P1(Gcl(P2))).
Hence, every C2-index coding problem P2 with n < m ≤
5 satisfies β(P2) = β(P1(Gcl(P2))). Since ��(P2) ≥
��(P1(Gcl(P2))) by Lubetzky and Stav [6], the symmetric
capacity of P2 is β(P1(Gcl(P2))), when n < m ≤ 5.

III. COUNTER EXAMPLE
Up to now, we have seen that ��(P2) = ��(P1(Gcl(P2))) in

many cases. One might conjecture ��(P2) = ��(P1(Gcl(P2)))
in general, going beyond ��(P2) ≥ ��(P1(Gcl(P2))) [6]. Al-
though we could not come up with a counter example for this,
we have a counter example with ��L(P2) > ��L(P1(Gcl(P2)))

in the case of linear index coding, which is provided in the
below.
Consider a C2-index coding problem Ic with n = 4 < m =

6:
1) Data set X = {x1, x2, x3, x4}.
2) Receiver set R = {r1, r2, · · · , r6}.
3) Required data f(1) = f(2) = f(3) = 1, f(4) = 2,

f(5) = 3 and f(6) = 1.
4) Side information N(1) = {2, 3}, N(2) = {2, 4},

N(3) = {3, 4}, N(4) = {1, 4}, N(5) = {1, 2} and
N(6) = {1, 3}.

The matrix representation of Ic and P1(Gcl(Ic)) are given
respectively by

M(Ic) =

⎡
⎢⎢⎢⎢⎢⎣

1 ∗ ∗ 0
1 ∗ 0 ∗
1 0 ∗ ∗
∗ 1 0 ∗
∗ ∗ 1 0
∗ 0 ∗ 1

⎤
⎥⎥⎥⎥⎥⎦
, M(Gcl(Ic)) =

⎡
⎢⎢⎢⎢⎢⎣

1 ∗ ∗ ∗ ∗ 0
∗ 1 ∗ ∗ 0 ∗
∗ ∗ 1 0 ∗ ∗
∗ ∗ ∗ 1 0 ∗
∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ 0 ∗ 1

⎤
⎥⎥⎥⎥⎥⎦
,

(5)

where minA∈M(Ic) rank2(A) = 3 and minA∈M(Gcl(Ic))

rank2(A) = 2. A matrix achieving minA∈M(Gcl(Ic)) rank2(A)
is given by

argmin
A∈M(Gcl(Ic))

rank2(A) =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0
1 1 0 1 0 1
0 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 1 0
0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎦
. (6)

Therefore, one can see that ��L(Ic) > ��L(P1(Gcl(Ic))).

IV. CONCLUSION
In this paper, we have considered the index coding problem

when the number of data is less than the number of receivers,
and have shown that in certain cases, the symmetric capacity
and code construction for index coding problems in the
considered case can be obtained from the existing symmetric
capacity result and codes for index coding problems when the
number of data is the same as that of receivers. Such cases
include cases with up to five receivers for which the symmetric
capacity is already known when the number of data is the same
as that of receivers.

APPENDIX: PROOF OF LEMMA 1
The index coding problem I2 in Lemma 1 is constructed

by adding xn+1 to I1 in Lemma 1. We can easily see that

��(I1) ≥ ��(I2), (7)

since every index code E1(x1, · · · , xn) for I1 is a valid
index code for I2 if x1 is replaced with x1 ⊕ xn+1, i.e.,
E1(x1 ⊕ xn+1, x2, · · · , xn), where ⊕ indicates modulo-2 ad-
dition. (r1 can decode x1⊕xn+1 and thus, so can r′1 but r′1 has
additional side information xn+1. Similarly, rn+1 can decode
x1 ⊕ xn+1 and thus, so can r′n+1 but r′n+1 has additional
side information x1. See Fig. 1.) Hence, to prove Lemma 1,
we need to show that ��(I1) ≤ ��(I2) under the assumption.
Since ��(I2) is the minimum I2 code length, there exists an
I2-code E�(X ′) with length ��(I2) and suppose that E�(X ′)
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satisfies the assumption (4). Then, by Lemma 2, there exists
an I1-code with length ��(I2). Consequently, we have

��(I1) ≤ ��(I2). (8)

By (7) and (8), we have ��(I1) = ��(I2). �

Lemma 2: There exists an I1-code with length �̄ if there
exists an I2-code∗ E2(X

′) with length �̄ satisfying

H(xj |E2(X
′), X ′[N(i)]) = 0 or 1, ∀i, j. (9)

Proof: Let E2(X
′) be an I2-code with length �̄: E2 :

(0, 1)n+1 → (0, 1)�̄, satisfying (9). Under the assumption (9),
we only need to consider the following cases:
Case 1: Suppose that H(x1|E2(X

′), X ′[N(1)]) = H(xn+1|
E2(X

′), X ′[N(n+1)]) = 0. Then, receiver r′1 can decode x1

without knowing xn+1, since n+1 �∈ N(1), and receiver r′n+1

can decode xn+1 without knowing x1, since 1 �∈ N(n + 1).
Consequently, E2({x1, · · · , xn, x1}) is a valid index code for
I1 by the construction of I2 from I1.
Case 2: Suppose that at least one of the following equations
holds:

H(x1|E2(X
′), X ′[N(1)]) = 1, (10)

H(xn+1|E2(X
′), X ′[N(n+ 1)]) = 1. (11)

Case 2-1: Assume that (10) holds. Applying the chain rule
in two different orders, we have

H(x1, xn+1|E2(X
′), X′[N(1)])

= H(xn+1|E2(X
′), X′[N(1)]) +H(x1|E2(X

′),X′[N ′(1)]), (12)
= H(x1|E2(X

′), X′[N(1)]) +H(xn+1|E2(X
′),X′[N(1)], x1), (13)

where (12) is because [X ′[N(1)], xn+1] = X ′[N ′(1)].
Since E2(X

′) is a valid index code for I2, H(x1| E2(X
′),

X ′[N ′(1)]) = 0, which is the second term in (12). This implies
that (12) ≤ 1 and (13) ≤ 1, because the entropy of a binary
variable is one at most and (12) = (13). Since H(x1| E2(X

′),
X ′[N(1)]) = 1 in (13) by assumption, H(xn+1| E2(X

′),
X ′[N(1)], x1) = 0 because (13)≤ 1. Therefore, r′1 can decode
xn+1 if r′1 does not know xn+1 but knows x1. This means
that r1 can decode xn+1 if r1 knows x1, when E2(X

′) is
used for I1. Furthermore, by the construction of I2 from I1,
N(n + 1) for rn+1 is N(n + 1) = N ′(n + 1)\{1}. Thus,
rn+1 can decode xn+1 if rn+1 knows x1 additionally, when
E2(X

′) is used for I1. Consequently,E2({0, x2, · · · , xn, x1})
is a valid index code for I1. Here, constant 0 is known to all
receivers beforehand.
Case 2-2: Assume that (11) holds. By applying the

chain rule to H(x1, xn+1|E2(X
′), X ′[N(n + 1)]) and us-

ing similar techniques to the above, we can show that
E2({x1, x2, · · · , xn, 0}) is a valid index code for I1. �

Remark 1: (Construction of I1-codes from I2-codes when
a datum is required by at most two receivers): Under the
assumption (9), we have either (a) H(x1|E2(X

′), X ′[N(1)])

∗Decodability at receivers 1 and n + 1 implies H(x1|E2(X′),
X′[N ′(1)]) = H(xn+1 |E2(X′), X′[N ′(n+ 1)]) = 0.

= H(xn+1|E2(X
′), X ′[N(n+1)]) = 0 or (b) at least one of

the following equations holds:

(b1) H(x1|E2(X
′), X ′[N(1)]) = 1, (14)

(b2) H(xn+1|E2(X
′), X ′[N(n+ 1)]) = 1. (15)

Given an index code E2 for I2, check the conditions (a), (b1)
and (b2). Use E2({x1, · · · , xn, x1}), E2({0, x2,· · · ,xn,x1}),
or E2({x1, x2, · · · , xn, 0}) in the cases of (a), (b1), or (b2),
respectively. Then, the selected code is a valid code for I1.

REFERENCES
[1] Y. Birk and T. Kol, “Coding on demand by an informed source (ISCOD)

for efficient broadcast of different supplemental data to caching clients,”
IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2825–2830, 2006.

[2] S. Jafar, “Wireless index coding,” in Global Communications Conference
(GLOBECOM), 2012 IEEE, pp. 2334–2339, 2012.

[3] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side
information,” IEEE Trans. Inform. Theory, vol. 57, no. 3, pp. 1479–1494,
2011.

[4] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Sasoglu, and L. Wang, “On
the capacity region for index coding,” in Information Theory Proceedings
(ISIT), 2013 IEEE International Symposium on, pp. 962–966, 2013.

[5] K. Shanmugam, A. G. Dimakis, and M. Langberg, “Local graph coloring
and index coding,” ArXiv pre-print cs.IT/1301.5359, Feb. 2013.

[6] E. Lubetzky and U. Stav, “Nonlinear index coding outperforming the
linear optimum,” IEEE Trans. Inform. Theory, vol. 55, no. 8, pp. 3544–
3551, 2009.

[7] A. S. Tehrani, A. G. Dimakis, and M. J. Neely, “Bipartite index coding,”
in Information Theory Proceedings (ISIT), 2012 IEEE International
Symposium on, pp. 2246–2250, 2012.

[8] N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hassidim, “Broad-
casting with side information,” in Foundations of Computer Science, 2008.
FOCS ’08. IEEE 49th Annual IEEE Symposium on, pp. 823–832, 2008.

2014 IEEE International Symposium on Information Theory

500


