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Abstract—Using large deviations results that characterize the
amount of information per node on a two-dimensional (2-D)
lattice, asymptotic behavior of a sensor network deployed over
a correlated random field for statistical inference is investigated.
Under a 2-D hidden Gauss-Markov random field model with
symmetric first order conditional autoregression, the behavior of
the total information [nats] and energy efficiency [nats/J] defined
as the ratio of total gathered information to the required energy
is obtained as the coverage area, node density and energy vary.

I. INTRODUCTION
In this paper, we investigate the fundamental behavior of

a flat multi-hop ad hoc sensor network deployed over a
correlated two-dimensional (2-D) random field for statistical
inference. In particular, we examine the amount of information
obtainable from a sensor network distributed over a 2-D
Gauss-Markov random field (GMRF) and related trade-offs
in various asymptotic settings. We consider the Kullback-
Leibler information (KLI) and mutual information (MI) [1]
as our information measures. Our approach to calculating the
total obtainable information is based on the large deviations
principle. That is, for large networks the total information is
approximately given by the product of the number of sensors
and the asymptotic per-sensor information. However, a closed-
form expression for the asymptotic per-sensor information
(or asymptotic information rate in 2-D) is not available for
general 2-D signals. To address this problem, we adopt the
conditional autoregression (CAR) model and corresponding
correlation model for the signal, and derive a closed-form
expression for the asymptotic information rate in 2-D. We do
so by exploiting the spectral structure of the CAR signal and
the relationship between the eigenvalues of the block circulant
approximation to a block Toeplitz matrix describing the 2-
D correlation structure. Based on the derived expressions for
asymptotic information rate and their properties, we investigate
the behavior of sensor networks deployed over correlated
random fields for statistical inference.
A. Related Work
Large deviations analysis of Gauss-Markov processes in

Gaussian noise has been considered previously. (See [2] and
references therein.) However, most work in this area considers
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only one-dimensional (1-D) signals or time series. A closed-
form expression for the asymptotic KLI rate was obtained and
its properties were investigated for 1-D hidden Gauss-Markov
random processes [2]. Large deviations analyses were used to
examine the issues of optimal sensor density and optimal sam-
pling in a 1-D signal model in [3] and [4]. For a 2-D setting, an
error exponent was obtained for the detection of 2-D GMRFs
in [5], where the sensors are located randomly and the Markov
graph is based on the nearest neighbor dependency enabling
a loop-free graph. In this work, however, measurement noise
was not considered. Our work here focuses on the analysis
of the fundamental behavior of 2-D sensor networks deployed
for statistical inference via new large deviations results for 2-D
hidden GMRFs, which enable us to investigate the impact of
field correlation and measurement signal-to-noise ratio (SNR)
on the information.

II. BACKGROUND AND SIGNAL MODEL

To simplify the problem and gain insights into behavior
in 2-D, we assume that sensors are located on a 2-D lattice
In = [0 : 1 : n− 1]2, as shown in Fig. 1. We assume that the
signal samples of sensors form a (discrete-index) 2-D GMRF
and that each sensor has Gaussian measurement noise. The
(noisy) measurement Yij of Sensor ij on the 2-D lattice In is
given by

Yij = Xij + Wij , ij ∈ In, (1)

where {Wij} represents independent and identically dis-
tributed (i.i.d.) N (0, σ2) noise with a known variance σ2, and
{Xij} is a GMRF on the 2-D lattice independent of the mea-
surement noise {Wij}. Thus, the observation samples form a
2-D hidden GMRF. In the following, we briefly introduce the
results on GMRFs relevant to further development.
Definition 1 (GMRF [6]): A random vector X =

(X1,X2, · · · ,Xn) ∈ R
n is a Gauss-Markov random

field with respect to (w.r.t.) a labelled graph G = (ν, E) with
mean μ and precision matrix Q > 0, if its probability density
function is given by

p(X) = (2π)−n/2|Q|1/2 exp

(
−

1

2
(X−μ)T Q(X−μ)

)
, (2)

and Qlm �= 0 ⇐⇒ {l,m} ∈ E for all l �= m. Here, ν is the set
of all nodes {1, 2, · · · , n} and E is the set of edges connecting
pairs of nodes, which represent the conditional dependence
structure.
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Fig. 1. Sensors on a 2-D Lattice In: Hidden Markov Structure

The 2-D indexing scheme ij in (1) can be appropriately
converted to an 1-D scheme to apply Definition 1. From here
on, we use the 2-D indexing scheme for convenience.
Definition 2 (Stationarity): A GMRF {Xij} on a 2-D dou-

bly infinite lattice I∞ is said to be stationary if the mean vector
is constant and Cov(Xij ,Xi′j′)

Δ
= E{(Xij−E{Xij})(Xi′j′−

E{Xi′j′})} = c(i− i′, j − j′) for some function c(·, ·).
For a 2-D stationary GMRF {Xij}, the covariance {γij}

is defined as γij = E{Xi′j′Xi′+i,j′+j} = E{X00Xij}, which
does not depend on i′ or j′ due to the stationarity. The spectral
density function of a zero-mean and stationary GMRF on I∞
with covariance γij is defined as

f(ω1, ω2) =
1

4π2

∑
ij∈I∞

γij exp(−ι(iω1 + jω2)), (3)

where ι =
√−1 and (ω1, ω2) ∈ (−π, π]2. Note that this is a

2-D extension of the conventional 1-D discrete-time Fourier
transform (DTFT).
Definition 3 (The Conditional Autoregression (CAR)): A

GMRF {Xij} is said to be a conditional autoregression if it
is specified using a set of full conditional normal distributions
with mean and precision:

E{Xij |X−ij} = −
1

θ00

∑
i′j′∈I∞ �=00

θi′j′Xi+i′,j+j′ , (4)

Prec{Xij |X−ij} = θ00 > 0, (5)

where X−ij denotes the set of all variables except Xij .
It is shown that the GMRF defined by the CAR model (4) -
(5) is a zero-mean stationary Gaussian process on I∞ with
the power spectral density [6]

f(ω1, ω2) =
1

4π2

1∑
ij∈I∞

θij exp(−ι(iω1 + jω2))
(6)

if |{θij �= 0}| < ∞, θij = θ−i,−j , θ00 > 0, (7)
{θij} is so that f(ω1, ω2) > 0, ∀(ω1, ω2) ∈ (−π, π]2. (8)

Henceforth, we assume that the 2-D stochastic signal {Xij}
in (1) is given by a stationary GMRF defined by the CAR
model (4) - (5) and (7) - (8).
III. ASYMPTOTIC INFORMATION RATES AND THEIR

PROPERTIES
In this section, we derive a closed-form expression for the

asymptotic KLI rate and MI rate in the model (1), defined as

K = lim
n→∞

1

|In| log
p0

p1
({Yij , ij ∈ In}) a.s. under p0, and

I = lim
n→∞

1

|In|I({Xij , ij ∈ In}; {Yij , ij ∈ In}),

respectively. For the MI, the signal model (1) is directly
applicable, whereas for the KLI the probability density func-
tions of the null (noise-only) and alternative (signal-plus-noise)
distributions are given by

p0(Yij) : Yij = Wij , ij ∈ In,

p1(Yij) : Yij = Xij + Wij , ij ∈ In. (9)

The following closed-form expressions for the asymptotic
information rates in the spectral domain have been obtained in
[7] by exploiting the spectral structure of the CAR signal and
the relationship between the eigenvalues of block circulant and
block Toeplitz matrices representing 2-D correlation structure.
Theorem 1: For the model (9) with the signal given by (4)

- (5), assuming that conditions (7) - (8) hold, the asymptotic
KLI rate is given by

K =
1

4π2

∫ π

−π

∫ π

−π

(
1

2
log

σ2 + 4π2f(ω1, ω2)

σ2
(10)

+
1

2

σ2

σ2 + 4π2f(ω1, ω2)
−

1

2

)
dω1dω2,

=
1

4π2

∫ π

−π

∫ π

−π

D(N (0, S
y
0 (ω1, ω2))||N (0, S

y
1 (ω1, ω2)) dω1dω2,

where D(·||·) denotes the Kullback-Leibler divergence.
Proof: In [8].
As a by-product of the proof of the above theorem, we have

the asymptotic MI rate given by

I =
1

4π2

∫ π

−π

∫ π

−π

1

2
log

σ2 + 4π2f(ω1, ω2)

σ2
dω1dω2. (11)

Theorem 1 is a 2-D extension of the asymptotic KLI rate
of 1-D hidden Gauss-Markov model obtained in [2], and the
asymptotic KLI rate (10) can be explained using a frequency
binning argument. Specifically, for each 2-D frequency bin
dω1dω2, the spectra are flat, i.e., the signals are independent
and Stein’s lemma can be applied for the bin. The overall KLI
is the sum of contributions from each segment.
A. Symmetric First Order Conditional Autoregression
To investigate the properties of the asymptotic KLI and MI

rates as functions of field correlation and SNR, we further
consider the symmetric first order conditional autoregression
(SFCAR), defined by the conditions

E{Xij |X−ij} =
λ

κ
(Xi+1,j + Xi−1,j + Xi,j+1 + Xi,j−1),

Prec{Xij |X−ij} = κ > 0,

where 0 ≤ λ ≤ κ
4 . (This is a sufficient condition to satisfy (7)

- (8).) Here, θ00 = κ and θ1,0 = θ−1,0 = θ0,1 = θ0,−1 = −λ.
In the SFCAR model, the correlation is symmetric for each
set of four neighboring sensor nodes. The SFCAR model is
a simple but meaningful extension of the 1-D autoregression
(AR) model which has the conditional causal dependency
only on the previous sample. Here in the 2-D case we have
conditional dependence on four neighboring nodes in the four
(planar) directions, capturing 2-D correlation structure. The
spectrum of the SFCAR signal is given by

f(ω1, ω2) =
1

4π2κ(1− 2ζ cos ω1 − 2ζ cos ω2)
, (12)
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where the edge dependence factor ζ is defined as

ζ
Δ
=

λ

κ
, 0 ≤ ζ ≤ 1/4. (13)

Here, ζ = 0 corresponds to the i.i.d. case whereas ζ = 1/4
corresponds to the perfectly correlated case. Therefore, the
correlation strength can be captured in this single quantity ζ
for SFCAR signals. The power of the SFCAR is obtained using
the inverse Fourier transform via the relationship (3), and is
given by Ps = γ00 = 2K(4ζ)

πκ ,
(
0 ≤ ζ ≤ 1

4

)
, where K(·) is

the complete elliptic integral of the first kind [9]. The SNR is
given by SNR = Ps

σ2 = 2K(4ζ)
πκσ2 . Using (10) and the SNR, we

obtain the asymptotic KLI and MI rates for the SFCAR signal,
given in the following corollary to Theorem 1, also from [7].
Corollary 1: The asymptotic KLI and MI rates for the

SFCAR 2D signal model are given by

Ks =
1

4π2

∫ π

−π

∫ π

−π

( 1

2
log

(
1 +

SNR

(2/π)K(4ζ)(1 − 2ζ cos ω1 − 2ζ cos ω2)

)

+
1

2

1

1 + SNR
(2/π)K(4ζ)(1−2ζ cos ω1−2ζ cos ω2)

−

1

2

)
dω1dω2. (14)

and
Is =

1

4π2

∫ π

−π

∫ π

−π

1

2
log

(
1 +

SNR

(2/π)K(4ζ)(1 − 2ζ cos ω1 − 2ζ cos ω2)

)
dω1dω2,

(15)

respectively.
Note that the SNR and correlation are separated in (14)-

(15), which enables us to investigate the effects of each term
separately.
B. Properties of the asymptotic KLI and MI rates (Ks and Is)
First, it is readily seen from Corollary 1 that Ks and

Is are continuously differentiable C1 functions of the edge
dependence factor ζ (0 ≤ ζ ≤ 1/4) for a given SNR since f :
x → K(x) is a continuously differentiable C∞ function for
0 ≤ x < 1 [10]. The values of Ks at the extreme correlations
are given by noting that K(0) = π

2 and K(1) = ∞.
Therefore, in the i.i.d. case (ζ = 0), the corollary reduces
to Stein’s lemma as expected, and Ks is given by

Ks|ζ=0 =
1

2
log(1+SNR)+

1

2(1 + SNR)
−

1

2
= D(N (0, 1)||N (0, 1+SNR)).

In the i.i.d. case, the asymptotic MI rate is given by the well
known formula, Is|ζ=0 = 1

2 log(1 + SNR). For the perfectly
correlated case (ζ = 1/4), on the other hand, Ks = 0 and
Is = 0. (In this case as well as in the i.i.d. case, the two-
dimensionality is irrelevant.) The limiting behavior of the
asymptotic information rates is given by Taylor’s theorem. Due
to the continuous differentiability, we have

Ks(ζ) = c1 · (1/4− ζ) + o(|1/4− ζ|), (16)
Is(ζ) = c′1 · (1/4− ζ) + o(|1/4− ζ|), (17)

for some constants c1 and c′1, as ζ → 1/4. Similarly, we
also have the linear limiting behavior for Ks and Is in a
neighborhood of ζ = 0 with non-zero limit values, as ζ → 0.
That is,

Ks(ζ) = Ks(0) + c2ζ + o(ζ), (18)
Is(ζ) = Is(0) + c′2ζ + o(ζ), (19)

for some c2 and c′2, as ζ → 0. For intermediate values of
correlation, it is seen that at high SNR Ks is monotonically

decreasing as ζ increases. At low SNR, on the other hand,
correlation is beneficial to the performance.
With regard to Ks and Is as functions of SNR, the behavior

of Ks is given by the following theorem.

Theorem 2: The asymptotic KLI rate Ks for the hidden
SFCAR model is continuous and monotonically increasing
as SNR increases for a given edge dependence factor 0 ≤
ζ < 1/4. Moreover, Ks increases linearly with respect to
1
2 log SNR as SNR → ∞. As SNR decreases to zero, on
the other hand, Ks converges to zero with the convergence
rate Ks(SNR) = c3 · SNR2 + o(SNR2) for some constant
c3 as SNR → 0. The asymptotic MI rate Is has similar
properties as a function of SNR, i.e., it is a continuous and
monotonically-increasing function of SNR. At high SNR, it
increases with rate 1

2 log SNR, whereas it decreases to zero
with rate of convergence Is(SNR) = c′3 · SNR + o(SNR) for
some constant c′3 as SNR→ 0.
Proof: In [8].
Note that the limiting behavior as SNR → 0 is different

for Ks and Is; Ks decays to zero quadratically while Is

diminishes linearly.

IV. SCALING LAWS IN AD HOC SENSOR NETWORKS OVER
CORRELATED RANDOM FIELD

Based on the results in the previous sections, we are now
ready to answer some fundamental questions in the design of
sensor networks for statistical inference about the underlying
stochastic field.
A. Physical correlation model
The actual physical correlation for the SFCAR model is

given by solving the corresponding continuous-index 2-D
stochastic differential equation (the stochastic Laplace equa-
tion)1 [11][(

∂

∂x

)2

+

(
∂

∂y

)2

− α2

]
X(x, y) = u(x, y), (20)

where u(x, y) is the 2-D white zero-mean Gaussian perturba-
tion and α > 0 is the diffusion rate. By solving the SDE, the
edge correlation factor ρ is given, as a function of the sensor
spacing dn, by [11]

ρ
Δ
=

γ01

γ00
=

γ10

γ00
= f(dn) = αdnK1(αdn), (21)

where K1(·) is the modified Bessel function of the second
kind whose asymptotic behavior is given by{

K1(x) → √
π
2xe−x as x→∞,

K1(x) → 1/x as x→ 0.
(22)

The correlation function (21) can be regarded as the represen-
tative correlation in 2-D, similar to the exponential correlation
function e−Adn in 1-D. Both functions decrease monotonically
w.r.t. dn. However, the 2-D correlation function is flat at

1Note that the solution of (20) is circularly symmetric, i.e., it depends only
on r =

√
x2 + y2, and samples of the solution X(x, y) of (20) on lattice

In do not necessarily form a discrete-index SFCAR GMRF. However, (20)
is still the continuous-index counterpart of the SFCAR model, and we use its
correlation function for the SFCAR model.
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dn = 0 [11]. Further, we have a continuous and differentiable
mapping g : ρ → ζ from the edge correlation factor ρ to the
edge dependence factor ζ, given by [8]

ρ =
(2/π)K(4ζ)− 1

4(2/π)ζK(4ζ)
=: g−1(ζ), (23)

which maps zero and one to zero and 1/4, respectively. Thus,
we have ζ = g(f(dn)), and for given physical parameters
(with a slight abuse of notation),

Ks(SNR, ζ) = Ks(SNR, g(f(dn))) = Ks(SNR, dn).

(And, similarly for Is.) We will use the arguments SNR and
ζ for Ks and Is properly if necessary.
B. Asymptotic behavior
In the following, we summarize the assumptions for the

planar ad hoc sensor network that we consider.
(A.1) n2 sensors are located on the grid In = [0 : 1 : n − 1]2

with spacing dn, as shown in Fig. 1, and a fusion center
is located at the center (
n/2�, 
n/2�).

(A.2) The observations {Yij} at sensor nodes form a 2-D
hidden (discrete-index) SFCAR Gauss-Markov random
field on the lattice for each dn > 0, and the edge
dependence factor is given by (21) and (23).

(A.3) The fusion center gathers the measurement from all nodes
using the minimum hop routing. Note that the links in
Fig. 1 are not only the Markov dependence edges but also
the routing links. The minimum hop routing requires a
hop count of |i− 
n/2�|+ |j − 
n/2�| to deliver Yij to
the fusion center.

(A.4) The communication energy per link Ec(dn) = E0d
ν
n,

where ν ≥ 2 is the propagation loss factor in wireless
channel.

(A.5) Sensing requires energy, and the sensing energy per node
is denoted by Es. Moreover, we assume that the measure-
ment SNR increases linearly w.r.t. Es, i.e., SNR = βEs

for some constant β.
Henceforth, we consider various asymptotic scenarios and
investigate the fundamental behavior of the ad hoc sensor
network deployed over a correlated random field for statistical
inference under assumptions (A.1)-(A.5). (Proofs are omitted
due to limited space.)
The sensor density μn on In is given by μn = n2

((n−1)dn)2 .
Assuming that the network is sufficiently large, the total
information about the underlying field obtainable from the
network is given by

KLIT = n2
Ks and MIT = n2Is, (24)

and the total consumed energy in the network is given by

E = n2Es + Ec(dn)
n−1∑
i=0

n−1∑
j=0

(|i− 
n/2�|+ |j − 
n/2�|),

= n2Es + Θ(n3)Ec(dn). (25)

Note that the knowledge of per-node information Ks and Is

and their properties w.r.t. SNR and sensor spacing dn in (24)

is critical for further development, and it is provided in the
previous sections.
We begin with the increasing area case.
Theorem 3 (Infinite area and fixed density): For an ad hoc

sensor network with a fixed and finite node density, the total
amount of information increases linearly as the area increases,
but under both information measures the amount of harvested
information per unit energy decays to zero with rate

η = Θ
(
area−1/2

)
, (26)

for any non-trivial diffusion rate α, i.e., 0 < α < ∞ as we
increase the area.
Next, we consider the case in which the node density

diminishes, i.e., dn → ∞. This case is of particular interest
at high SNR since at high SNR less correlated samples
yield larger per-node information. However, the per-sensor
information is upper bounded as dn →∞, and the asymptotic
behavior is given by the following theorem.
Theorem 4: As dn →∞, the per-node information Ks and

Is converge to Ks(0) = D(N (0, 1)||N (0, 1 + SNR)) and
Is(0) = 1

2 log SNR, respectively, and the convergence rate is
given by

Ks(dn) = Ks(0)− c4
√

dne−αdn + o
(√

dne−αdn

)
, (27)

Is(dn) = Is(0)− c′4

√
dne−αdn + o

(√
dne−αdn

)
, (28)

for constants c4, c′4 > 0 depending on the SNR.
Theorem 4 can be proved using (18, 19) and (21, 22),

and explains how much gain is obtained from less correlated
observations by increasing the sensor spacing in 2-D. Fig. 2
shows Ks and Ec as functions of dn for α = 1, c4 = 1 and 10
dB SNR. The gain in information is given by

√
dne−αdn for

large dn, whereas the required per-link communication energy
increases without bound, i.e., Ec(dn) = E0d

ν
n (ν ≥ 2).

Since the exponential term is dominant in the gain as dn

increases, the information gain obtained by increasing dn

decreases almost exponentially, and there is no significant gain
by increasing the sensor spacing further after some value.
Hence, it is not effective in terms of energy efficiency to deploy
a very sparse network aiming at less correlated samples at high
SNR.
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Fig. 2. Per-node information and per-link communication energy w.r.t. sensor
spacing dn (SNR = 10 dB, α = 1, c4 = 1)
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The per-link communication energy can be made arbitrarily
small by decreasing the sensor spacing. To investigate the
effect of diminishing communication energy Ec as dn → 0, we
now consider the asymptotic case in which the node density
goes to infinity for a fixed coverage area. In this case, the per-
node information decays to zero as dn → 0 since ζ → 1/4 as
dn → 0, and Ks(ζ) and Is(ζ) converge to zero as ζ → 1/4, as
shown in Section III-B. The asymptotic behavior in this case
is given by the following theorem.
Theorem 5 (Infinite density model): For the infinite density

model with a fixed coverage area, the per-node information
decays to zero with rate

Ks = c5μ
−1
n + o

(
μ−1

n

)
, (29)

for some constant c5 as the node density μn →∞. Hence, the
amount of total information per unit area (nats/m2) converges
to the constant c5 as μn →∞. Furthermore, in the case of no
sensing energy, a non-zero energy efficiency η is achievable if
the propagation loss factor ν = 3, and even an infinite energy
efficiency is achievable if ν > 3 as μn →∞ for fixed area.2

The finite total information for the infinite density and fixed
area model follows our intuition. The maximum information
provided by the samples from the continuous-index random
field does not exceed the information between X(x, y) and
Y (x, y) except for the case of spatially white fields. It is
common that the propagation loss factor ν > 3 for near field
propagation (i.e., dn → 0). Hence, infinite energy efficiency
is achievable as we increases the node density for a fixed area
considering only communication energy. Note that the total
amount of information converges to a constant as we increases
the node density. So, the infinite energy efficiency is achieved
by diminishing communication energy as dn → 0. Considering
the sensing energy, however, infinite energy efficiency is not
feasible since we have in this case

E = n2Es + Θ(n3−ν) and η =
c5 + o(1)

n2Es + Θ(n3−ν)
, ν ≥ 2,

(30)
as n → ∞ for fixed coverage area. In this case the sensing
energy n2Es is the dominant factor for low energy efficiency,
and the energy efficiency decreases to zero with rate O

(
μ−1

n

)
.

Thus, it is critical for a densely deployed sensor network to
minimize the sensing energy or processing energy for each
sensor.

In the infinite density model, we have observed that energy
is an important factor in efficiency. Now we investigate the
change of total information w.r.t. energy. We fix the node
density and consider two scenarios to increase the required
energy: One is to fix the coverage area also and increase the
sensing energy, and the other is to fix the sensing energy and
increase the coverage area. We assume that the network size is
sufficiently large so that our asymptotic analysis is valid. The
energy asymptotic behavior for two scenarios is summarized
in the following theorem.
2Of course, this depends on the assumption of Ec(dn) = E0dν

n for any
dn > 0. However, this assumption may not be valid for small dn.

Theorem 6: As we increase the total energy E consumed
by a sensor network with a fixed node density and fixed area,
the total information increases with rate

Total information = O (log E) (31)

as E → ∞. When the node density and sensing energy are
fixed and the increasing energy is used to enlarge the coverage
area, on the other hand, the total amount of information
increases with rate of

Total information = Θ
(
E2/3

)
, (32)

for any ν > 0, as E →∞.
Theorem 6 suggests a guideline for investing the excess

energy. It is not efficient to invest energy to improve the quality
of sensed samples from a limited area. This only provides the
increase in total information in logarithmic scale. Rather the
energy should be spent to increase the number of samples
by enlarging the coverage area even if it yields less accurate
samples.

V. CONCLUSIONS
We have analyzed the asymptotic behavior of ad hoc sensor

networks deployed over correlated random field for statistical
inference. Using our large deviations results that characterize
the asymptotic information rate in 2-D for GMRFs under the
CAR model, we have obtained fundamental scaling laws for
total information and energy efficiency as the node density,
coverage area and consumed energy change. The results pro-
vide guidelines for sensor network design for statistical infer-
ence about 2-D correlated random fields such as temperature,
humidity, density of a gas on a certain area.
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