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ABSTRACT

The problem of optimal node density for ad hoc sensor networks deployed
for making inferences about two dimensional correlated random fields is
considered. Using a symmetric first order conditional autoregressive Gauss-
Markov random field model, large deviations results are used to character-
ize the asymptotic per-node information gained from the array. This result
then allows an analysis of the node density that maximizes the information
under an energy constraint, yiclding insights into the trade-offs among the
information, density and energy.

1. INTRODUCTION

We consider the design of wireless ad hoc sensor networks for
making inferences about correlated random fields that can model
various physical processes, such as temperature, humidity or the
density of a certain gas, in a two-dimensional (2-D) space. In par-
ticular, we consider the optimal density problem for sensor net-
works deployed for statistical inference such as detection or recon-
struction of the underlying field. From the information-theoretic
perspective, statistical inference via sensor networks can be viewed
as a problem of extracting information about an underlying phys-
ical process using networked sensor nodes that consume energy
for both sensing and communication. Thus, the optimal density
problem can be formulated as follows.

Problem 1 Given a sensor network deployed on a fixed coverage
area of size 2L x 2L and with total available energy E, find the
node density [ that maximizes the total information I; obtainable
from the network.

To address this problem, we model the signal field as a 2-D Gauss-
Markov random field (GMRF), and consider the Kullback-Leibler
information (KLI) and mutual information (MI) [1] as ways of
quantifying inferential performance. (The operational meaning of
the KLI is given by its appearance as the error exponent of the
miss probability of Neyman-Pearson detection of the signal field
in sensor noise, whereas that of the MI is given by its role as a
measure of uncertainty reduction.) Our approach to determine the
total information obtainable from a sensor network is based on
the large deviations principle (LDP). That is, for large networks,
the total information is approximately given by the product of the
number of sensors and the asymptotic per-node information, or the
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asymptotic information rate. (The units of these intensive quanti-
ties is thus nats/sample.) Although closed-form expressions for the
asymptotic per-node information are not available for general 2-D
signals, for the conditional autoregression (CAR) model closed-
form expressions for the asymptotic KLI and MI rates have been
determined by the authors in [2]. Based on these expressions for
asymptotic information rates and their properties, in the current
paper we investigate the problem of optimal node density. It is
seen that there exists a density maximizing the total information
obtainable under an energy constraint. The optimal density is eas-
ily obtained numerically, and the behavior of the total information
as a function of the density is explained.

1.1. Related Work

The issues of optimal sensor density and optimal sampling have
been considered based on LDP in previous work (e.g., [3]). How-
ever, most work in this area is based on one-dimensional (1-D) sig-
nal or time series models that do not capture the two-dimensionality
of actual spatial signals. In contrast, our work is based on the
LDP results obtained in [2], where a closed-form expression for
the asymptotic KLI rate is obtained in the spectral domain. For a
2-D setting, an error exponent was obtained for the detection of
2-D GMREFs in [4], where the sensors are located randomly and
the Markov graph is based on the nearest neighbor dependency
enabling a loop-free graph. In that work, however, measurement
noise was not considered, unlike the present analysis.

2. SIGNAL MODEL AND BACKGROUND

In this section, we briefly introduce our previous work [2] relevant
to the sensor density problem. To simplify the problem and gain
insight into the 2-D case, we assume that sensors are located on a
2-D lattice Z,, = [-n : 1 : n]?, as shown in Fig. 1, and thus form
a 2-D array. We model the underlying physical process as a 2-D
GMREF and assume that each sensor has Gaussian measurement
noise. So, the observation Y;; of Sensor 45 on the 2-D lattice Z,, is
given by

Yi; = Xij + Wij, ij € In, )
where {W;;} represents independent and identically distributed
(i.i.d.) zero-mean Gaussian measurement noise with variance o2,
and {X;;} is a GMRF on Z,, independent of {W;;}. Note that
the observation samples form a 2-D hidden GMRF on Z,,. In the
following, we summarize our relevant LDP results on GMRFs that
will be useful in the sequel.

Definition 1 (GMRF [5]) 4 random vector X = (X1, X2, -,
Xn) € R" is a Gauss-Markov random field with respect to (w.r.t.).
a labelled graph G = (v, E) with mean vector p and precision
matrix Q > 0, if its probability density function is given by

p(X) = @m)"2Q 2 exp [~ (X - WTQX - p) ), @
2

978-1-4244-2241-8/08/$25.00 ©2008 IEEE 271



~~... Sensor ij
. ﬁ .

J

Fig. 1. 2-D sensor array on a lattice Z,,: Hidden Markov structure

and Qim # 0 <= {l,m} € Eforalll # m. Here, v is the set of
all nodes {1,2,--- ,n} and & is the set of edges connecting pairs
of nodes, which represent the conditional dependence structure.

Note that the 2-D indexing scheme ij in (1) can be properly con-
verted to an 1-D scheme to apply Definition 1. From here on, we
use the 2-D indexing scheme for convenience.

Definition 2 (The Conditional Autoregression (CAR)) 4 GMRF
{Xi;} is said to be a conditional autoregression if it is specified
using a set of full conditional normal distributions with means and
precisions:

1
IE{X,JIX ,,'j} = -—6— oinIXi+ilyj+j/, 3)
00 4 j1 €0 200
Prec{X;|X i;} = 60 >0, )

where X _;; denotes the set of all variables except X ;.

By imposing first order symmetry on the correlation structure, we
have the symmetric first order conditional autoregression (SFCAR)
defined by the conditions

A
E{Xi;|X_i;} = ;(Xi+1,j + Xio1,; + Xijj + Xij-1),
Prec{XijIX_ij} = K> 0,
where 0 < A < £. Here, fpo = kand 610 = 0_10 = 6,1 =

0o,—1 = —A. The SFCAR model is the 2-D extension of the 1-
D autoregressive (AR) model that is widely used to model basic
correlation in 1-D. Here in the 2-D case we have symmetric con-
ditional dependence on four neighboring nodes in the four (pla-
nar) directions, capturing basic 2-D correlation structure. It can be
shown that the GMRF defined by the SFCAR model is a zero-mean
stationary Gaussian process on Zo, with power spectral density [5]

1

Flwr,wa) = 4m2k(1 — 2¢ coswy — 2 coswz)’ ®
where the edge dependence factor ( is defined as
22 o0<c<ia ©

The SFCAR model is useful especially because the correlation
strength is captured in this single quantity ¢ for SFCAR signals,
which enables us to investigate the per-node information as a func-
tion of the field correlation. Here, ¢ = 0 corresponds to the i.i.d.
case, whereas ( = 1/4 corresponds to the perfectly correlated
case. Henceforth, we assume that the 2-D stochastic signal {X;; }
in (1) is given by a stationary GMRF defined by the SFCAR model,
asn — co. The signal power P 2 E{Xo0}? (= E{X2} Vi, 7)
is obtained using the inverse Fourier transform, and is given by

M (0 < ¢ < 1), where K(-) is the complete elliptic
ntegral of the first kind [6] Thus, the measurement SNR is given

by SNR = £ = 2K(),

2.1. Large System Analysis: Per-Node Information

The key idea behind the large system analysis here is that, un-
der the stationarity assumption, the amounts of information from
the node become identical regardless of sensor location as the net-
work size grows, and the total amount of information is given ap-
proximately by the product of the number of sensor nodes and the
(asymptotic) per-node information. The asymptotic per-node KLI
and per-node MI are defined as

Xs = llm ——log

|I | ({Y,J,zj € I,}) a.s. under pg, and

js - nlLII;O |I II({XU’Z] € I"} {Kjvl] € I"})’

respectively. For the MI, the signal model (1) is applicable di-
rectly, whereas for the KLI the probability density functions of the
null (noise-only) and alternative (signal-plus-noise) distributions
are those given under the respective models

po(Yij) : Yy =Wy, ij €Iy,

p1(Yi;) Yij = Xij + Wij, ij € In. @)
The following closed-form expressions for the asymptotic per-node
information in the spectral domain have been obtained in [2] by ex-
ploiting the spectral structure of the CAR signal and the relation-

ship between the eigenvalues of block circulant and block Toeplitz
matrices representing 2-D correlation structure.

Theorem 1 Under the 2-D SFCAR signal model, the asymptotic
per-node KLI X s and per-node MI I are given by

SNR
Ks = / / ( log (1 + )
an2 (2/m)K (4¢)(1 - 2¢ cos wy — 2¢ cos wy)
1

: )
— ~ Jdwidwy. (8)
2 16w2

SNR
21+ (277 R{A)(1=2¢ cos wy —2¢ cos wg)

and

) dwydwg,
©)

SNR
Jg = —— / / — log (l +
an2 Jm)—m 2 (2/m)K(4¢)(1 — 2¢ cosw) — 2¢ cos wy)
respectively.

Note that the SNR and correlation are separated in (8)-(9), which
enables us to investigate the effects of each term separately. With
regard to X s and J; as functions of ¢, it is readily seen from Theo-
rem 1 that X and J, are continuously differentiable C'* functions
of the edge dependence factor ( (0 < ¢ < 1/4) for a given SNR
since f : x — K/(x) is a continuously differentiable C* function
for0 <z < 1[7]. Fig. 2 shows X as a function of ¢ for several
different SNR values. It is seen in the figure that at high SNR X
decreases monotonically as the correlation becomes strong, i.e.,
¢ — 1/4. Atlow SNR, on the other hand, correlation is beneficial
to the performance. Js shows similar behaviors even if it is not
shown here.

With regard to K s and I as functions of SNR, the behavior is
given by the following theorem from [2].

Theorem 2 X and J, are continuous and monotonically increas-
ing as SNR increases for a given edge dependence factor 0 <
¢ < 1/4. Moreover, X5 and J, increase linearly with respect
to 5 log SNR as SNR — oo. As SNR decreases to zero, on the
other hand, X s and J, decrease to zero with convergence rates

Ks(SNR) = c-SNR® + o(SNR?), (10)
Js(SNR) ¢ - SNR + o(SNR), (1

respectively, for some constants c and c’.
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Fig. 2. X, as a function of ¢: (a) SNR = 10 dB, (b) SNR = 0 dB,
(c) SNR =-3 dB, (d) SNR = -5 dB (from [2])

3. AD HOC SENSOR NETWORKS: OPTIMAL DENSITY

Based on the results in the previous sections, we now address the
optimal density problem given in Section 1.

3.1. Physical correlation model

As we vary the node density for a given area with size 2L x 2L,
the sensor spacing dy, changes. In turn, the edge dependence factor
between two adjacent samples varies for given physical diffusion
parameters. So, we first derive the relationship between sensor
spacing d,, and the edge dependence factor ¢ for the SFCAR. The
physical correlation for the SFCAR model is obtained by solv-
ing the continuous-index equivalent given by the 2-D stochastic
Laplace equation [8]

N

where u(z, y) is the 2-D white zero-mean Gaussian perturbation

and o > 0 is the diffusion rate. By solving this equation, the edge
correlation factor p is given, as a function of the sensor spacing
dn, by [8]

a E{Xoo X0} _ _
= —]E{Xgo} = g(dn) = adnK1(ady,), (13)

where K (-) is the modified Bessel function of the second kind.
The correlation function (13) can be regarded as the representative
correlation in 2-D, similar to the exponential correlation function
e~ 44 in 1-D. Both functions decrease monotonically w.r.t. dy,.
However, the 2-D correlation function is flat at d, = 0 [8]. Fur-
ther, we have a mapping g : p — ( from the edge correlation
factor p to the edge dependence factor ¢, given by [9]

_@/mE@EQ -1 _
4(2/m)CK(4C)
which maps zero and one to zero and 1/4, respectively. Combining

(13) and (14), we have a mapping ( = h(g(d»)) from the sensor
spacing d, to ¢ for the SFCAR model.

h(0), (14)

3.2. Density Analysis

The assumptions for the planar ad hoc sensor network that we con-
sider is summarized in the following.

(A.1) (2n + 1) sensors are located on the lattice Z, = [-n :
1 : n]? with spacing d,,, as shown in Fig. 1, and a fusion
center is located at the center (0, 0). The observation sam-
ples {Yi;} at sensors form a 2-D hidden SFCAR GMRF on
the lattice, and the correlation functions are given by (13) -
(14).

(A.2) The fusion center collects the measurement from all nodes
using minimum hop routing. A hop count of [i| + || is re-
quired for minimum hop routing to deliver Y;; to the fusion
center.

(A.3) The communication energy per edge is given by E.(d,) =
Eody,, where v > 2 is the attenuation factor of wireless
propagation in the physical layer.

(A.4) Sensing requires energy, and the sensing energy per node is
denoted by E;. Further, we assume that the measurement
SNR increases linearly w.r.t. Es, i.e.,, SNR = BE; for
some constant 3.

The density optimization under the energy constraint can be solved

using our large system analysis in the previous sections assuming

the asymptotic result is still valid in low density case. The total

amount I; of information is given by

I = (2n 4+ 1)2X(SNR,dy,) or I; = (2n + 1)23,(SNR, d,.), (15)

for KLI or MI, respectively. The total energy E required for data
collection is given by

@n+1)2Es + Ee(dn) > Y (lil +15]),

t=—nj=—-n
@2n+1)2Es +2n(n+ 1)(2n + 1)Ec(dn).  (16)
Thus, Problem 1 can be reformulated as

E

pr = argmax (2L)pn Ko (SNR(E, in), du(pn)), )
Hn
st (2n + l)zEs(ﬂn) +2n(n + 1)(2n + 1)Ec(dn(un)) < E,

where the sensing energy F; as well as n and d,, are functions

of the node density fin. From ., (= (2n + 1)2/(2L)?), we first
calculate n and then dr, = L/n. When d,, is determined, E.(d,,)
is obtained from the propagation parameters Eo and v, and then
Es(pn) is obtained from the constraint in (17). Once Es(un) is
determined, the measurement SNR is calculated using Assumption
(A.5), i.e., SNR = BFE; and finally we evaluate the per-sensor in-
formation X s (SNR, ¢(p(dr))) and J5s(SNR, {(p(d»))) from The-
orem 1.

Fig. 3 shows the total information obtainable from 2 x 2
square meter area as we vary the node density u, with a fixed
total energy budget of E joules. Other parameters that we use are
given by

a = 100 (diffusion rate), S =1, Ep =0.1and v = 2.

!Suppose that E; joules are required for one sensing to obtain one sam-
ple Y;;(m) = X;;(m) 4+ W;;(m) at sensor 5 and the measurement
SNR of this sample is SNR;. Now assume that we obtain M samples
(m = 1,---, M) using M subsensors at the same location ¢j simultane-
ously, requiring M - E1 joules, and we take an average of these M samples
at sensor ¢, yielding an effective sample Y;; = (1/M) Y Y;;j(m) of
SNR of MSNR; assuming that the measurement noise is i.i.d. across the
subsensors.
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Here, the values of F, Fy and 8 are chosen so that the minimum
and maximum per-sensor sensing SNR’s are roughly -10 to 10 dB
for maximum and minimum densities, respectively. The diffusion
rate o = 100 is selected for the edge correlation coefficient p to
vary from almost zero to 0.6 as the node density changes. It is seen
in the figure that there is an optimal density for each value of E
for both information measures. It is also seen that the total KLI is
sensitive to the density change whereas the total MI is less sensi-
tive. The existence of the optimal density is explained as follows.
At low density, we have only a few sensors in the area. So, the
energy for communication is not large due to the small number of
communicating nodes and most of the energy is allocated to the
sensing energy; the per-node sensing energy is even higher due to
the small number of sensors. However, the per-node information
increases only logarithmically w.r.t. the sensing energy or SNR
by Theorem 2, and this logarithmic gain cannot compensate for
the loss in the number of sensors. Therefore, low density yields
very poor performance, and large gain is obtained initially as we
increase the density from very low values as seen in Fig. 3. As we
further increase the density, on the other hand, and the per-node
sensing energy or SNR decreases due to the increase in the over-
all communication and the increase in the number of sensor nodes,
and the measurement SNR is eventually at low SNR regime, where
(10) and (11) hold. From (16), we have

Es(pn) = B7'SNR = O(n"?) (18)

for fixed E and E. = Eo(L/n)?, as n — oo. By the low SNR
behavior of X given by (10), the behavior of the total Kullback-
Leibler information is given by

Total KLI = (2L)*unXs = O(n*n™*) = O(n™2) = O(us ')
and by (11) the total mutual information is given by
Total MI = (2L)*unJs = O(n*n™%) = O(1).

This explains the initial decay after the peak in Fig. 3 (a) and quite
flat curve in Fig. 3 (b). In the above equations, however, the effect
of ( on X and J; is not considered. As the node density increases,
the sensor spacing decreases and the edge dependence factor ¢ in-
creases for a given diffusion rate . The behavior of the per-node
information as a function of ¢ is shown in Fig. 2. Note in Fig. 2
that the per-node information has a second lobe at strong correla-
tion at low SNR while at high SNR it decreases monotonically as
the correlation becomes strong. The benefit of sample correlation
is evident in the low energy case (E = 50[J]) in 3 (a); the sec-
ond peak around p, = 95 [nodes/m?] is observed. Note that the
second peak is not so significant. Since the per-node information

decays to zero as ( — 1/4 eventually, the total amount of informa-
tion decreases eventually, as seen in the right corner of the figure,
as we increases the node density.

4. CONCLUSIONS

We have considered the design of 2-D arrays of networked sensors
for making inferences about 2-D correlated random fields. Under
the SFCAR GMRF model, the density maximizing the total in-
formation obtainable from the network under an energy constraint
has been investigated. We have seen that such an optimal den-
sity exists. At low density, the amount of information gathered is
small because the logarithmic increase in the per-node informa-
tion w.r.t. energy cannot compensate for the loss in the number of
sensor nodes. At high density, on the other hand, the performance
degrades mainly due to too much correlation between samples and
low sensing energy. The optimal node density effects a trade-off
between these two effects.

5. REFERENCES

[1] F. Liese and 1. Vajda, “On divergence and informations in
statistics and information theory,” IEEE Trans. Inform. The-
ory, vol. 52, no. 10, pp. 4394-4412, Oct. 2006.

[2] Y. Sung, H. V. Poor and H. Yu, “Large deviations analysis for
the detection of 2D hidden Gauss-Markov random fields using
sensor networks,” in Proc. 2008 ICASSP, Las Vegas, NY, Mar.
2008.

[3] J.-F. Chamberland and V. V. Veeravalli, “How dense should
a sensor network be for detection with correlated observa-
tions?,” IEEE Trans. Inform. Theory, vol. 52, no. 11, pp. 5099-
5106, Nov. 2006.

[4] A. Anandkumar, L. Tong and A. Swami, “Detection of Gauss-
Markov random field on nearest-neighbor graph,” in Proc.
2007 ICASSP, Hawaii, USA, Apr. 2007.

[5] H. Rue and L. Held, Gaussian Markov Random Fields: The-
ory and Applicatons, New York: Chapman & Hall/CRC,
2005.

[6] J. Besag, “On a system of two-dimensional recurrence equa-
tions,” Journal of the Royal Statistical Society. Series B, vol.
43, no. 3, pp. 302-309, 1981.

A. Erdélyi, Higher Transcendental Functions, Vol. II., New
York: McGraw-Hill, 1953.

[8] P. Whittle, “On stationary processes in the plane,” Biometrika,
vol. 41, no. 3, pp. 434-449, Dec. 1954.

[9] Y. Sung, H. V. Poor and H. Yu, “How much information can
one get from a wireless ad hoc sensor network over a corre-
lated random field?,” submitted to IEEE Trans. Inform. The-
ory, Apr. 2008.

[7

—

274



