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ABSTRACT

The problem of optimal node density for ad hoc sensor networks deployed
for making inferences about two dimensional correlated random fields is
considered. Using a symmetric first order conditional autoregressive Gauss
Markov random field model, large deviations results are used to character
ize the asymptotic per-node information gained from the array. This result
then allows an analysis ofthe node density that maximizes the information
under an energy constraint, yielding insights into the trade-offs among the
information, density and energy.

1. INTRODUCTION

We consider the design of wireless ad hoc sensor networks for
making inferences about correlated random fields that can model
various physical processes, such as temperature, humidity or the
density of a certain gas, in a two-dimensional (2-D) space. In par
ticular, we consider the optimal density problem for sensor net
works deployed for statistical inference such as detection or recon
struction of the underlying field. From the infomlation-theoretic
perspective, statistical inference via sensor networks can be viewed
as a problem of extracting information about an underlying phys
ical process using networked sensor nodes that consume energy
for both sensing and communication. Thus, the optimal density
problem can be formulated as follows.

Problem 1 Given a sensor nenvork deployed on a fixed coverage
area ofsize 2£ x 2£ and with total available energy E, find the
node density J.Ln that maximizes the total information It obtainable
from the network.

To address this problem, we model the signal field as a 2-D Gauss
Markov random field (GMRF), and consider the Kullback-Leibler
information (KLI) and mutual information (MI) [1] as ways of
quantifying inferential performance. (The operational meaning of
the KLI is given by its appearance as the error exponent of the
Iniss probability of Neyman-Pearson detection of the signal field
in sensor noise, whereas that of the MI is given by its role as a
measure of uncertainty reduction.) Our approach to determine the
total information obtainable from a sensor network is based on
the large deviations principle (LDP). That is, for large networks,
the total information is approximately given by the product of the
number of sensors and the asymptotic per-node information, or the
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asymptotic information rate. (The units of these intensive quanti
ties is thus nats/sample.) Although closed-form expressions for the
asymptotic per-node information are not available for general 2-D
signals, for the conditional autoregression (CAR) model closed
form expressions for the asymptotic KLI and MI rates have been
determined by the authors in [2]. Based on these expressions for
asymptotic information rates and their properties, in the current
paper we investigate the problem of optimal node density. It is
seen that there exists a density maximizing the total information
obtainable under an energy constraint. The optimal density is eas
ily obtained numerically, and the behavior of the total information
as a function of the density is explained.

1.1. Related Work

The issues of optimal sensor density and optimal sampling have
been considered based on LDP in previous work (e.g., [3]). How
ever, most work in this area is based on one-dimensional (I-D) sig
nal or time series models that do not capture the two-dimensionality
of actual spatial signals. In contrast, our work is based on the
LOP results obtained in [2], where a closed-form expression for
the asymptotic KLI rate is obtained in the spectral domain. For a
2-D setting, an error exponent was obtained for the detection of
2-D GMRFs in [4], where the sensors are located randomly and
the Markov graph is based on the nearest neighbor dependency
enabling a loop-free graph. In that work, however, measurement
noise was not considered, unlike the present analysis.

2. SIGNAL MODEL AND BACKGROUND

In this section, we briefly introduce our previous work [2] relevant
to the sensor density problem. To simplify the problem and gain
insight into the 2-D case, we assume that sensors are located on a
2-D lattice Tn = [-n : 1 : n]2, as shown in Fig. 1, and thus form
a 2-D array. We model the underlying physical process as a 2-D
GMRF and assume that each sensor has Gaussian measurement
noise. So, the observation Yij of Sensor ij on the 2-D lattice Tn is
given by

(1 )

where {Wij} represents independent and identically distributed
(i.i.d.) zero-mean Gaussian measurement noise with variance a 2

,

and {Xij } is a GMRF on Tn, independent of {Wij }. Note that
the observation samples form a 2-D hidden GMRF on In. In the
following, we summarize our relevant LOP results on GMRFs that
will be useful in the sequel.

Definition 1 (GMRF (5J) A random vector X = (Xl, X 2 ,'" ,

X n ) E IRn is a Gauss-Markov random field with respect to (w.r.t.).
a labelled graph g = (v, £) with mean vector IJ and precision
matrix Q > 0, if its probability density function is given by

p(X) = (27r)- nj2 IQI1
j2 exp ( -~(X -lLfQ(X -IL») , (2)
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2.1. Large System Analysis: Per-Node Information

The key idea behind the large system analysis here is that, un
der the stationarity assumption, the amounts of information from
the node become identical regardless of sensor location as the net
work size grows, and the total amount of information is given ap
proximately by the product of the number of sensor nodes and the
(asymptotic) per-node information. The asymptotic per-node KLI
and per-node MI are defined as

X s == lim _,I1 log Po ({Y'ij, ij E In}) a.s. under Po, and
n~OC! In P1

J s == lim I; II( {Xij, ij E In}; {Yij, ij E In}),
n~OC! .Ln

respectively. For the MI, the signal model (1) is applicable di
rectly, whereas for the KLI the probability density functions of the
null (noise-only) and alternative (signal-plus-noise) distributions
are those given under the respective models

Fig. 1. 2-D sensor array on a lattice In: Hidden Markov structure

and Qlm -I 0~ {l, m} E £ for alll -I m. Here, lJ is the set of
all nodes {I, 2, . . . ,n} and £ is the set ofedges connecting pairs
ofnodes, which represent the conditional dependence structure.

Note that the 2-D indexing scheme ij in (1) can be properly con
verted to an I-D scheme to apply Definition 1. Fronl here on, we
use the 2-D indexing scheme for convenience.

Definition 2 (The Conditional Autoregression (CAR» A GMRF
{X ij} is said to be a conditional autoregression if it is specified
using a set offilll conditional normal distributions with means and
precisions:

PO(Yij)

P1 (Yij)

Yij == Wij, ij E In,

Yij == Xij + W ij , ij E In. (7)

By imposing first order symmetry on the correlation structure, we
have the sYl1unetric first order conditional autoregression (SFCAR)
defined by the conditions ~!'Tr !'Tr (~log (1 + !:i'NR

4'Tr 2 -'Tr -'Tr 2 (2/'Tr)K(4<)(1 2( cos w1 - 2( cos w2)

+ : ~ . 1 ~~~ _ :) dW 1 dW 2' (8)

2 1 + (2/7r)K(4(,)(1-2~N:os w1 -2(, cos w2) 2

and

The following closed-form expressions for the asymptotic per-node
information in the spectral domain have been obtained in [2] by ex
ploiting the spectral structure of the CAR signal and the relation
ship between the eigenvalues ofblock circulant and block Toeplitz
matrices representing 2-D correlation structure.

Theorem 1 Under the 2-D SFCAR signal model, the asymptotic
per-node KLf X s and per-node Mf Js are given by

A
-(Xi+1,j + X i- 1,j + Xi,j+1 + X i,j-1),

"""" > 0,

L (Ji'j,Xi+i',j+j" (3)
(Joo i'j'ETCXJ=,POO

Prec{Xij IX- ij } (Joo > 0, (4)

where X- ij denotes the set ofall variables except Xij.

E{XijIX-ij }

Prec{Xij IX - ij }

(9)

1 J7r !'Tr 1 ( SNRJ8 = ~ -log 1 + ------------------------
4'Tr 2 -'Tr. -'Tr 2 (2/'Tr)K(4()(1 - 2( cos w1 - 2( cos w2)

respectively.

Note that the SNR and correlation are separated in (8)-(9), which
enables us to investigate the effects of each term separately. With
regard to X s and Js as functions of (, it is readily seen from Theo
rem I that X s and Js are continuously differentiable 0 1 functions
of the edge dependence factor ( (0 :S ( S 1/4) for a given SNR
since f : x ~ K (x) is a continuously differentiable CCXJ function
for 0 :S x < 1 [7]. Fig. 2 shows X s as a function of ( for several
different SNR values. It is seen in the figure that at high SNR X s

decreases monotonically as the correlation becomes strong, Le.,
( ~ 1/4. At low SNR, on the other hand, correlation is beneficial
to the performance. J s shows similar behaviors even if it is not
shown here.

With regard to X s and Is as functions of SNR, the behavior is
given by the following theorem from [2].

Theorem 2 X s and Js are continuous and monotonically increas
ing as SNR increases for a given edge dependence factor 0 :S
( < 1/4. Moreover, X sand J s increase linearly with respect
to ! log SNR as SNR ~ 00. As SNR decreases to zero, on the
other hand, X s and Js decrease to zero with convergence rates

(10)

(11 )

c· SNR
2 + 0(SNR2

),

c' . SNR + o(SNR) ,

respectively, for some constants c and c'.

The SFCAR model is useful especially because the correlation
strength is captured in this single quantity ( for SFCAR signals,
which enables us to investigate the per-node information as a func
tion of the field correlation. Here, ( == 0 corresponds to the i.i.d.
case, whereas ( == 1/4 corresponds to the perfectly correlated
case. Henceforth, we assume that the 2-D stochastic signal {Xij }
in (1) is given by a stationary GMRF defined by the SFCAR model,

as n ~ 00. The signal power P ~ E{XOO }2 (== E{X;j} V i,j)
is obtained using the inverse Fourier transform, and is given by

P == 2~(:O, (o:s ( :s i), where K (.) is the complete elliptic
integral of the first kind [6]. Thus, the measurement SNR is given
b SNR == P == 2K(45).Y ~ 7rKa

where 0 :s A :s ~. Here,Ooo == "" and 01,0 == (}-1,0 == 00 ,1 ==
00 -1 == - A. The SFCAR model is the 2-D extension of the 1
D 'autoregressive (AR) model that is widely used to model basic
correlation in I-D. Here in the 2-D case we have symmetric con
ditional dependence on four neighboring nodes in the four (pla
nar) directions, capturing basic 2-D correlation structure. It can be
shown that the GMRF defined by the SFCAR model is a zero-mean
stationary Gaussian process on IOC! with power spectral density [5]

1
f(W1,W2) == 41r2 ",,(1 _ 2(COSW1 _ 2(COSW2) ' (5)

where the edge dependence factor ( is defined as

( ~~, O:S ( :S 1/4. (6)

""
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3. AD HOC SENSOR NETWORKS: OPTIMAL DENSITY

Based on the results in the previous sections, we now address the
optimal density problem given in Section 1.

Fig. 2. X s as a function of (: (a) SNR = 10 dB, (b) SNR = 0 dB,
(c) SNR = -3 dB, (d) SNR = -5 dB (from [2])

3.2. Density Analysis

The assumptions for the planar ad hoc sensor network that we con
sider is summarized in the following.

(A.l) (2n + 1)2 sensors are located on the lattice In == [-n :
1 : n]2 with spacing dn , as shown in Fig. 1, and a fusion
center is located at the center (0,0). The observation sam
ples {Yij} at sensors form a 2-D hidden SFCAR GMRF on
the lattice, and the correlation functions are given by (13) 
(14).

(A.2) The fusion center collects the measurement from all nodes
using minimum hop routing. A hop count of Iii + Ijl is re
quired for minimum hop routing to deliver Yij to the fusion
center.

(A.3) The communication energy per edge is given by Ec(dn ) ==
Eod~, where lJ 2: 2 is the attenuation factor of wireless
propagation in the physical layer.

(A.4) Sensing requires energy, and the sensing energy per node is
denoted by E s. Further, we assume that the measurement
SNR increases linearly w.r.t. E s , i.e., SNR == f3Es for
some constant (J. 1

The density optimization under the energy constraint can be solved
using our large system analysis in the previous sections assuming
the asymptotic result is still valid in low density case. The total
amount It of information is given by

It = (2n + 1)2Xs (SNR, dn ) or It = (2n + 1)2:Js (SNR, dn ), (15)

for KLI or MI, respectively. The total energy E required for data
collection is given by
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a == 100 (diffusion rate), (3 == 1, Eo == 0.1 and lJ == 2.

(17)argmax (2L)2 JlnXs (SNR(E, Jln), dn(Jln»,
Pn

where the sensing energy E s as well as nand dn are functions
of the node density lin. From Jln (== (2n + 1)2 j (2L )2

), we first
calculate n and then dn == L j n. When dn is determined, E c ( dn )

is obtained from the propagation parameters Eo and lJ, and then
Es(Mn) is obtained from the constraint in (17). Once Es(Mn) is
determined, the measurement SNR is calculated using Assumption
(A.5), i.e., SNR = (JEs and finally we evaluate the per-sensor in
formation X s (SNR, ((p(dn ) )) and Js (SNR, ((p(dn ))) from The
orem I.

Fig. 3 shows the total information obtainable from 2 x 2
square meter area as we vary the node density Mn with a fixed
total energy budget of E joules. Other parameters that we use are
given by

(2n + 1)2 E s + 2n(n + 1)(2n + l)Ec (dn ). (16)

Thus, Problem 1 can be reformulated as

1Suppose that E1 joules are required for one sensing to obtain one sam
ple Yij (m) = X ij ( m) + Wij (m) at sensor ij and the measurement
SNR of this sample is SNR1. Now assume that we obtain At samples
(m = 1, ... ,M) using M subsensors at the same location ij simultane
ously, requiring M· E1 joules, and we take an average of these M samples
at sensor ij, yielding an effective sample Yij = (11M) I:m Yij(m) of
SNR of MSNR1 assuming that the measurement noise is i.i.d. across the
subsensors.

n n

E (2n + 1)2 E s + Ec(dn ) L L (Iii + iii),

which maps zero and one to zero and 1/4, respectively. Combining
(13) and (14), we have a mapping ( == h(g(dn )) from the sensor
spacing dn to ( for the SFCAR model.

3.1. Physical correlation model

As we vary the node density for a given area with size 2L x 2L,
the sensor spacing dn changes. In tum, the edge dependence factor
between two adjacent samples varies for given physical diffusion
parameters. So, we first derive the relationship between sensor
spacing dn and the edge dependence factor ( for the SFCAR. The
physical correlation for the SFCAR model is obtained by solv
ing the continuous-index equivalent given by the 2-D stochastic
Laplace equation [8]

[(:xr +(:J2

-a
2]X(x,y)=U(X,Y), (12)

where u(x, y) is the 2-D white zero-mean Gaussian perturbation
and Q > 0 is the diffusion rate. By solving this equation, the edge
correlation factor p is given, as a function of the sensor spacing
dn , by [8]

~ E{XOO X 10 }
p == E{X50} == g(dn ) == adn K 1 (adn ), (13)

where K 1 ( .) is the modified Bessel function of the second kind.
The correlation function (13) can be regarded as the representative
correlation in 2-D, similar to the exponential correlation function
e- Adn in I-D. Both functions decrease monotonically w.r.t. dn .

However, the 2-D correlation function is flat at dn == 0 [8]. Fur
ther, we have a mapping 9 : P -+ ( from the edge correlation
factor p to the edge dependence factor (, given by [9]

(2 j n ) K (4() - 1 -1

P == 4(2jn)(K(4() ==: h ((),
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Fig. 3. (a) total KLI vs. density and (b) total MI vs. density

4. CONCLUSIONS
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Here, the values of E, Eo and {3 are chosen so that the minimum
and maximum per-sensor sensing SNR's are roughly -10 to 10 dB
for maximum and minimum densities, respectively. The diffusion
rate Q == 100 is selected for the edge correlation coefficient p to
vary from almost zero to 0.6 as the node density changes. It is seen
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tive. The existence of the optimal density is explained as follows.
At low density, we have only a few sensors in the area. So, the
energy for communication is not large due to the small number of
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