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Abstract—New large-deviations results that characterize the
asymptotic information rates for general �-dimensional (�-D)
stationary Gaussian fields are obtained. By applying the general
results to sensor nodes on a two-dimensional (2-D) lattice, the
asymptotic behavior of ad hoc sensor networks deployed over
correlated random fields for statistical inference is investigated.
Under a 2-D hidden Gauss–Markov random field model with sym-
metric first-order conditional autoregression and the assumption
of no in-network data fusion, the behavior of the total obtainable
information [nats] and energy efficiency [nats/J] defined as the
ratio of total gathered information to the required energy is ob-
tained as the coverage area, node density, and energy vary. When
the sensor node density is fixed, the energy efficiency decreases to
zero with rate ����������� and the per-node information under
fixed per-node energy also diminishes to zero with rate ���

����
� �

as the number �� of network nodes increases by increasing the
coverage area. As the sensor spacing �� increases, the per-node
information converges to its limit � with rate � �

�
���

���

for a given diffusion rate �. When the coverage area is fixed and
the node density increases, the per-node information is inversely
proportional to the node density. As the total energy �� consumed
in the network increases, the total information obtainable from
the network is given by � ���	��� for the fixed node density and
fixed coverage case and by ���

���
� � for the fixed per-node sensing

energy and fixed density and increasing coverage case.

Index Terms—Ad hoc sensor networks, asymptotic Kull-
back–Leibler information rate, asymptotic mutual information
rate, conditional autoregressive model, Gauss–Markov random
fields, large deviations principle, stationary Gaussian fields.

I. INTRODUCTION

S ENSOR networks have drawn much attention in recent
years because of their promising applications such as sci-

entific research, environmental monitoring, and surveillance [1].
In the design of sensor networks, there are several distinctive
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Fig. 1. Ad hoc sensor network over a physical process.

features. First, sensor networks are designed to sense and mon-
itor various physical phenomena such as temperature, humidity,
density of a certain gas or stress level of different locations in a
structure. Many of these physical processes can be modeled as
two-dimensional (2-D) random fields over a certain area, where
the uncertainty of the underlying signal is captured as the ran-
domness of samples and the proximity of samples close in loca-
tion is modeled by the correlation among the samples. Second,
sensors in different locations should be able to deliver the mea-
sured data to a control center (or fusion center) where the de-
cision is made, and thus the communication capability is re-
quired as in ad hoc communication networks. Such communica-
tion functionality can be provided by networking sensor nodes,
for example, using multihop routing. Third, energy is one of the
critical issues in sensor network design since both sensing and
communication require energy and it is difficult to recharge bat-
teries in already deployed sensor nodes. Hence, it is of interest
to design energy-efficient sensor networks.

In this paper, we consider the design of such sensor networks,
and investigate the behavior and efficiency of these networks
from an information-theoretic perspective. From the informa-
tion-theoretic viewpoint, the process of sensing and communi-
cation mentioned above can be viewed as extracting information
(about the underlying 2-D physical process) using imperfect
sensor nodes by expending energy for statistical inference such
as detection or reconstruction of the sensed signal field [2], [3],
as shown in Fig. 1. Relevant questions regarding the network de-
sign are as follows. How much information can one obtain from
the network for given coverage and node density? How does the
amount of gathered information change as we increase the cov-
erage area or node density? How do the field correlation and
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measurement signal-to-noise (SNR) affect the amount of infor-
mation obtainable from the network? What is the optimal node
density? What are the information and energy tradeoffs in such
a sensor network with ad hoc routing? Answering these ques-
tions is difficult, especially, because of the 2-D spatial correla-
tion structure of the signal process inherent to the two dimen-
sionality of network deployment. To circumvent this problem,
several studies based on one-dimensional (1-D) spatial signal
models have been conducted (see, e.g., [2], [4], [5]). However,
there is an important difference between 1-D signal models and
actual spatial signals. Suppose that we take observations from
sensors located equidistantly along a line transect laid over an
area. The observations may then be viewed as samples gener-
ated by a 1-D process along the line transect and results from
time series analysis could be applied to examine their statistical
properties. In the 2-D case, however, there is no natural notion of
signal flow or dependence direction along the transect as there is
in a more traditionally obtained time series. For samples from
sensors placed over a 2-D area, it is necessary to consider the
signal dependence in all direction in the plane.

A. The Approach and Summary of Results

In this paper, we consider ad hoc sensor networks deployed
for making statistical inferences about underlying 2-D random
fields, and address the above questions in a general 2-D setting.
In particular, we investigate the amount of information obtain-
able from the network and related tradeoffs among information,
coverage, density, and energy in various asymptotic settings,
and reveal the fundamental behavior of large scale planar
ad hoc sensor networks. We model the signal field as a 2-D
Gauss–Markov random field (GMRF), which is suitable for
many physical processes, and consider the Kullback–Leibler
information (KLI) and mutual information (MI) as our infor-
mation measures [6], [7]. Our approach for calculating the
total obtainable information is based on the large deviations
principle (LDP). Under a stationarity assumption, the amount
of information from a sensor node becomes independent of
sensor location as the network size grows, and the total amount
of information is approximately given by the product of the
number of sensor nodes and the asymptotic information rate
or asymptotic per-node information. (Thus, the units of these
quantities are nats/node.) To quantify the information content,
we first derive closed-form expressions for the asymptotic
per-node KLI and MI for stationary Gaussian fields in a general

-dimensional ( -D) lattice in the spectral domain, and then
apply these results to the 2-D case. We do so by exploiting
the spectral structure of -D stationary Gaussian signals and
the relationship between the eigenvalues of the block circu-
lant approximation to a block Toeplitz matrix describing the

-D correlation structure. However, the general expressions
obtained in this way render the investigation of the field
correlation and SNR difficult. To address this problem, we
adopt the conditional autoregression (CAR) model, which is
a generalization of the autoregressive (AR) model of classical
time-series analysis. We further investigate the properties of
the asymptotic per-node KLI and MI as functions of the field
correlation and the measurement SNR under the symmetric
first-order conditional autoregression (SFCAR) model, which

captures the 2-D correlation on the plane effectively. In this
case, the asymptotic per-node KLI and MI are given explicitly
in terms of the SNR and the field correlation. The behavior of
the asymptotic per-node KLI and MI as functions of correlation
strength is seen to divide into two regions depending on the
value of the SNR. At high SNR, uncorrelated observations
maximize the per-node information for a given SNR, whereas
there is nonzero optimal correlation at low SNR. Interestingly,
it is seen that there is a discontinuity in the optimal correlation
strength as a function of SNR. In the perfectly correlated case,
the asymptotic per-node KLI and MI are zero as expected.
As a function of SNR, the asymptotic per-node information
increases as for a given correlation strength at high
SNR. At low SNR, the two information measures show dif-
ferent rates of convergence to zero.

Based on the derived expressions for asymptotic per-node in-
formation and their properties under the SFCAR and the cor-
responding correlation function, we then investigate the funda-
mental behavior of large-scale ad hoc sensor networks deployed
over correlated random fields for statistical inference. Specif-
ically, we examine the total information [nats] (about the un-
derlying physical process) obtainable from the network and the
energy efficiency [nats/J] defined as the ratio of total gathered
information to the required energy as the coverage, density and
energy vary. We assume that sensors are located on a 2-D lattice
and all sensor nodes in the network deliver the measured data to
a fusion center in the center of the 2-D lattice via minimum hop
routing without in-network data fusion. Under these assump-
tions, we have the following results on the tradeoffs among the
information, coverage, density, and energy, and the results pro-
vide guidelines for the design of sensor networks for statistical
inference about many interesting physical processes that can be
modeled as 2-D correlated random fields.

(1) When the sensor node density is fixed, the amount of total
information increases linearly with respect to (w.r.t.) the cov-
erage area, and the energy efficiency decreases to zero with rate

as the coverage area increases. Further, in this
case the amount of information per sensor node diminishes to
zero as the network size grows with fixed energy per node.

(2) As the sensor spacing increases, the per-node infor-
mation converges to its limit with rate for
a given diffusion rate . Hence, the per-node information satu-
rates almost exponentially as we increase the sensor spacing.

(3) When the coverage area is fixed and the node density in-
creases, the per-node information is inversely proportional to the
node density for any nontrivial diffusion rate. Hence, the total
amount of information from a given area is upper-bounded un-
less the random field is spatially white.

(4) As the total energy consumed in the network in-
creases, the total information obtainable from the network
is given by for fixed node density and increasing
coverage, whereas the total information increases only with
rate of for fixed node density and fixed coverage.

B. Related Work

Large deviations analysis of Gaussian processes in Gaussian
noise has been considered previously, e.g., [8]–[13]. However,
most work in this area considers only 1-D signals or time series.
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Fig. 2. Sensors on a 2-D lattice: hidden Markov structure.

A closed-form expression for the asymptotic KLI rate was
obtained and its properties were investigated for 1-D hidden
Gauss–Markov random processes in [12]. Large deviations
analyses were used to examine the issues of optimal sensor
density and optimal sampling in a 1-D signal model in [2]
and [4]. For a 2-D setting, an error exponent was obtained for
the detection of 2-D GMRFs in [14], where the sensors are
located randomly and the Markov graph is based on the nearest
neighbor dependency enabling a loop-free graph. Our work
here focuses on the analysis of the fundamental behavior of 2-D
sensor networks deployed for statistical inference via new large
deviations results for general -D and 2-D stationary Gaussian
random fields and their application to 2-D SFCAR GMRFs,
which enables us to investigate the impact of field correlation
and measurement SNR on the information and the fundamental
behavior of ad hoc sensor networks for statistical inference
with preliminary presentation of the work in [15].

C. Notation and Organization

We will make use of standard notational conventions. Vectors
and matrices are written in boldface with matrices in capitals.
All vectors are column vectors. For a matrix , indicates
the transpose and denotes the th element of . We
reserve for the identity matrix of size (the subscript is
included only when necessary). For a random vector ,
is the expectation of under probability density , .
The notation means that is Gaussian distributed
with mean vector and covariance matrix . For a set ,
denotes the cardinality of .

The paper is organized as follows. The background and signal
model are described in Section II. In Section III, the closed-form
expressions for the asymptotic KLI and MI rates are obtained
in the spectral domain, and their properties are investigated as
functions of the correlation and the SNR under the symmetric
first-order CAR model. The tradeoffs related to ad hoc sensor
networks deployed for statistical inference are presented in Sec-
tion IV, followed by conclusions in Section V.

II. BACKGROUND AND SIGNAL MODEL

We assume that sensors are distributed over a 2-D area and
each sensor measures the underlying signal field at its location.
To simplify the problem and gain insights into behavior in 2-D,
we assume that sensors are located on a 2-D square lattice

and
(1)

where the distance between two adjacent nodes and
is , as shown in Fig. 2. (We will use to denote

when there is no ambiguity of notation.) We model the 2-D
signal field (or simply ) sampled by sen-
sors as a GMRF1 w.r.t. an undirected graph in which a node cor-
responds to a sensor node or its signal sample. We assume that
each sensor has Gaussian measurement noise. The noisy mea-
surement of Sensor on the 2-D lattice is then given by

(2)

where represents independent and identically dis-
tributed (i.i.d.) noise with a known variance , and
the GMRF is assumed to be independent of the mea-
surement noise . Thus, the observation samples form a
2-D hidden GMRF.2 In the following, we briefly review results
on GMRFs relevant to our further development.

Definition 1 (Undirected Graph): An undirected labeled
graph is a collection of nodes and edges, where

is the set of nodes in the graph, and is
the set of edges and . There exists
an undirected edge between two nodes and if and only if

.

We will use the terms node, sample, and sensor interchange-
ably hereafter.

Definition 2 (GMRF): A Gaussian random vector
with mean vector and co-

variance matrix is a GMRF w.r.t. a labeled graph
if and are independent given if and

only if there exists no edge between nodes and , where
and .

Note that a GMRF is defined using conditional independence
on a graph. However, its distribution is easily characterized by
the mean and the precision matrix , and is given
by

(3)

and if and only if for all , i.e.,

(4)

Note that the covariance matrix is completely dense in general
while the precision matrix has nonzero elements only

1The Markov dependence structure may be restrictive. However, it is a mean-
ingful model capturing 2-D spatial correlation structure and allowing further
analysis.

2In this paper, we focus primarily on the spatial correlation structure of 2-D
sensor fields, and the signal evolution over time is not considered.
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when there is an edge between nodes and in the Markov
random field. Hence, when the graph is not fully connected, the
precision matrix is sparse [16]. The 2-D indexing scheme
in (1) and (2) can properly be converted to a 1-D scheme to
apply Definitions 1 and 2. From here on, we again use the 2-D
indexing scheme for convenience.

Definition 3 (Stationarity): A GMRF on a 2-D infinite
lattice is said to be (second-order) stationary if the mean
vector is constant and the covariance between samples and

depends only on the difference of the node index, i.e.,

for some function , where is the mean of the stationary
field.

Without loss of generality, we assume that the signal GMRF
is zero-mean.3 For a 2-D zero-mean and stationary

GMRF , the covariance is defined as

(5)

which does not depend on or due to the stationarity. The
spectral density function of a stationary GMRF on
with covariance is defined as

(6)

where and . Note that (6) is a 2-D
extension of the conventional 1-D Fourier transform. We can
express from the spectral density function via the inverse
transform

(7)

A stationary GMRF can be implicitly specified by a CAR
model, which is a natural generalization of the AR model arising
in 1-D time series and which provides an efficient tool for cap-
turing the spatial correlation structure of the sensor field consid-
ered here.

Definition 4 (The Conditional Autoregression [16]): A zero-
mean CAR GMRF is defined by a set of full conditional normal
distributions with mean and precision

(8)

and

(9)

where denotes the set of all variables except .

Note in (8) that the conditional mean of given all other
node variables depends on nodes such that

3Of course, if a stationary GMRF has a known and nonzero mean, the known
mean can be subtracted to yield a zero-mean field.

, and the relationship between the CAR model of (8) and (9)
and the precision matrix is given by

(10)

Hence, the Markov dependence structure on the graph is easily
captured by the CAR model through (4), and directly
represent the connectivity of the Markov graph.

Theorem 1 (Spectrum of a CAR Model [16]): The GMRF de-
fined by the CAR model of (8) and (9) is a zero-mean stationary
Gaussian process on with the spectral density function

(11)

if

(12)

and

is such that
(13)

Henceforth, we assume that the 2-D stochastic signal
in (2) is given by a stationary GMRF defined by the CAR model
of (8) and (9) satisfying (12) and (13) as .

The SNR of the observation in (2) is well defined due to
the stationarity as , and is given by

(14)

where the signal power is constant over and is given,
using the inverse Fourier transform of (6), by

(15)

III. ASYMPTOTIC INFORMATION RATES: CLOSED-FORM

EXPRESSIONS AND IMPACT OF CORRELATION AND SNR

In this section, we derive closed-form expressions for the
asymptotic KLI and MI rates under the 2-D CAR GMRF model
discussed in the previous section. We further investigate the
properties of the asymptotic information rates under a sym-
metric correlation assumption. For the MI, the signal model (2)
is directly applicable, whereas for the KLI the probability den-
sity functions of the null (noise-only) and alternative (signal-
plus-noise) distributions are given by

and (16)

(17)

respectively. The asymptotic KLI rate is defined as

almost surely (a.s.) under (18)

where and are given by (16) and (17), respectively. Under
a Neyman–Pearson detection formulation, the miss probability
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decays exponentially in many cases, including (16) and
(17), and the error exponent is defined as the exponential decay
rate

(19)

where is the total number of samples in . It is known
that the error exponent is given by the asymptotic KLI rate
defined in (18) in this case [17]. Hence, a larger KLI rate (or per-
node KLI) implies better detection performance with a given
network size, or a smaller network size required for a given level
of performance.

While the asymptotic KLI rate determines the error exponent
for Neyman–Pearson detection, the asymptotic MI rate is inter-
preted as the amount of uncertainty reduction about the hidden
signal field resulting from one observation sample, in the large
sample size regime. The asymptotic MI rate is given by

(20)

It is shown in the sequel that the asymptotic KLI rate is smaller
than the asymptotic MI rate and that the two information mea-
sures converge when SNR increases. Thus, at high SNR, the two
information measures are equivalent.

A. Asymptotic Information Rates in General -Dimension

While the 2-D results are relevant to our analysis of fun-
damental tradeoffs in planar sensor networks, it is of theoret-
ical interest to investigate the statistical properties of stationary
Gaussian random fields in general higher dimension. In this sub-
section, we first derive closed-form expressions for the asymp-
totic KLI and MI rates for stationary Gaussian random fields in

-D, and then apply the results to the 2-D case. For a stationary
-D Gaussian random field , where is the set of

all integers, the autocovariance function under is given by

(21)

and the corresponding Fourier transform (i.e., the power spectral
density) and its inverse are given by

(22)

and

(23)

respectively, where the integration is over , and
denotes the inner product between and . Note that (21),

(22), and (23) are the extensions of (5), (6), and (7), respectively,

to -D. The null and alternative distributions arising in the KLI
in -D are given by

(24)

where are i.i.d. Gaussian from , is a sta-
tionary -D Gaussian random field with spectrum ,4 and

(25)

Based on the previous work [18], we further exploit the rela-
tionship between the eigenvalues of block circulant and block
Toeplitz matrices representing correlation structure in -D and
the i.i.d. null distribution, and obtain the KLI for (24) given by
the following theorem.

Theorem 2 (Asymptotic KLI Rate in -D): Suppose that
A.1 the alternative spectrum has a positive lower
bound, and
A.2 such that

Then, the asymptotic KLI rate for (24) is given by

(26)

(27)

where denotes the Kullback–Leibler distance.
Proof: See Appendix I.

Theorem 2 is an extension to general -D of the asymptotic
KLI rate in 1-D obtained in [12], and shows that the frequency
binning interpretation of (27) holds in the general -D case
under some regularity conditions on the alternative spectrum.
Note that the integrand in (27) is the Kullback–Leibler informa-
tion between two zero-mean Gaussian distributions with vari-
ances and , respectively. For each -D frequency
segment , the spectra can be thought of as being flat, i.e., the
signals are independent, and Stein’s lemma [19] can be applied
for the segment. The overall KLI is the sum of contributions
from each bin. The smoothness of the spectrum is a suffi-
cient condition for Assumption A.2 for second-order stationary
fields, and thus the frequency binning in Theorem 2 is valid for a
wide class of spectra. Theorem 2 follows from the fact that is
given by the almost-sure limit of the normalized log-likelihood
ratio in (18) and that we have Gaussian distributions for and

. That is, is given by the almost sure limit

under (28)

4Note that �� � need not be a hidden Markov field.
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where is a vector consisting of observation samples
with elements arranged in lexicographic order; for

example, in 2-D

(29)

and and are the covariance matrices of
under and , respectively. Note that the log-likelihood ratio
in (28) consists of two terms: one is a deterministic term and
the other is a quadratic random term. The overall convergence
follows from the convergence of each of the two terms. Note that
the deterministic term in (28) is simply the mutual information
between and for the model

(30)

Using the convergence of the first term in the right-hand side
(RHS) of (28), the asymptotic MI rate for -D is given by

(31)

where is the spectrum of the signal . This is simply
a -D extension of the 1-D MI rate in spectral form [20], and
shows the validity of the formula and frequency
binning approach in general -D under some regularity condi-
tions on the spectrum; a sufficient condition is provided in The-
orem 2.

Applying the -D results to the 2-D hidden GMRF model of
(16) and (17), we have the following corollary for 2-D.

Corollary 1 (Asymptotic Information Rates in 2-D): As-
suming that the conditions (12) and (13) hold, the asymptotic
KLI and MI rates for the hidden CAR GMRF model with (16)
and (17) are given by

(32)

and

(33)

where is the 2-D spectrum of the signal GMRF
defined in (11).

Proof: See Appendix I.

Comparing (32) and (33), we note that the asymptotic KLI
rate is strictly less than the asymptotic MI rate for any positive
signal spectrum, and that the two information measures con-
verge with a fixed offset of as the SNR increases without
bound since in (32) as . Hence,
the two information measures can be equivalently used at high
SNR.

Fig. 3. Symmetric first-order conditional autoregression model.

B. Symmetric First-Order Conditional Autoregression

In the previous subsection, we have derived closed-form ex-
pressions for the asymptotic KLI and MI rates for hidden CAR
GMRFs with general 2-D spectra defined in (11) in the spec-
tral domain. However, these general spectral expressions render
further analysis infeasible. To investigate the impact of the field
correlation and the SNR on the information rates, we further
adopt the SFCAR model, described by the conditions

(34)

and

(35)

where .5 Note that the parameters in (8) and (9)
for this model are given by ,

, and all other . In this model, the corre-
lation is symmetric for each set of four neighboring nodes, as
seen in Fig. 3. The SFCAR model is a simple yet meaningful
extension of the 1-D first-order AR model which has the con-
ditional causal dependency only on the previous sample. Here
in the 2-D SFCAR we have the conditional dependency on four
neighboring nodes in the four (planar) directions. By Theorem1,
the spectrum of the SFCAR is given by

(36)

where we define the edge dependence factor as

(37)

Note that for the range of the 2-D spectrum
(36) is always nonnegative and the conditions (12) and (13)
are satisfied. Note also that corresponds to the i.i.d.
case whereas corresponds to the perfectly correlated
case, i.e., for all , , , . Hence, the correlation
strength can be captured in this single quantity for 2-D SFCAR
signals: larger implies stronger correlation. The power of the
SFCAR signal is obtained using the inverse Fourier transform
via the relation (6), and is given by [21]

(38)

where is the complete elliptic integral of the first kind. The
SNR is given by

(39)

5This is a sufficient condition to satisfy (12) and (13).
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(40)

(41)

Using (32), (36), and (39), we now obtain the asymptotic KLI
and MI rates in the SCFAR signal case, denoted by and
and given in the following corollary to Corollary 1.

Corollary 2: For the hidden 2-D SFCAR signal model the
asymptotic per-node KLI is given by (40) at the top of the
page, and the asymptotic per-node MI is given by (41), also
at the top of the page.

Proof: The result follows upon substitution of (36) and (39)
into (32) and (33), respectively.

Note that the SNR for the hidden SFCAR model is dependent
on correlation through (see (39)). However, the SNR and cor-
relation are separated in the expressions (40) and (41) for the
asymptotic per-node information, which enables us to investi-
gate the effects of each term on the per-sample information sep-
arately.

1) Properties of the Asymptotic Per-Node KLI and MI for the
Hidden SFCAR Model: First, it is readily seen from Corollary
2 that the asymptotic per-node KLI and MI are contin-
uously differentiable functions of the edge dependence factor

for a given SNR since is a con-
tinuously differentiable function for [22]. Now
we examine the asymptotic behavior of and as functions
of . The values of at the extreme correlations are given by
noting that the values of the complete elliptic integral at the two
extreme correlation points

and

Therefore, in the i.i.d. case (i.e., ), Corollary 2 reduces to
Stein’s lemma [19] as expected, and is given by

(42)

(43)

For the perfectly correlated case , on the other hand,
. In fact, in this case as well as in the i.i.d. case, the

two-dimensionality is irrelevant. The known result in the 1-D
case [12] is applicable. With regard to , we have similar be-
havior at the extreme correlations. In the i.i.d. case, the mutual
information is given by the well-known formula

(44)

whereas we have in the perfectly correlated case. Thus,
both information measures are zero at perfect correlation

. The limiting behavior of the asymptotic information rates

near the extreme correlation values is given by Taylor’s theorem.
Due to the differentiability of and w.r.t. , we have

(45)

and

(46)

in a neighborhood of for some constants and as
. Similarly, we also have the linear limiting behavior

for and in a neighborhood of with nonzero lim-
iting values and ,
respectively, as . That is

(47)

and

(48)

for some and , as .
For intermediate values of correlation, we evaluate (40) and

(41) for several different SNR values, as shown in Fig. 4. It is
seen that, at high SNR, decreases monotonically as in-
creases. Hence, i.i.d. observations yield the largest per-node in-
formation for a given value of SNR when SNR is large, as in
the 1-D case [12]. As we decrease the SNR, it is seen that a
second mode grows near , i.e., in the strong correla-
tion region. As we decrease the SNR further, the value of of
the second mode shifts toward , and the value of the second
mode exceeds that of the i.i.d. case. Hence, there is a disconti-
nuity in the optimal correlation as a function of SNR in the 2-D
case even though the maximal itself is continuous, as seen
in Fig. 5. That is, there is a phase transition for optimal corre-
lation w.r.t. SNR: above a certain SNR value i.i.d. observations
yield the best performance, whereas below that SNR point sud-
denly strong correlation is preferred. This is not the case for 1-D
Gauss–Markov time series, where the optimal correlation maxi-
mizing the information rate is continuous w.r.t. SNR. Although
it is not shown here, the per-node MI exhibits similar be-
havior as a function of the edge dependence factor .

With regard to and as functions of SNR, it is straightfor-
ward to see from (40) that they are continuously differentiable
functions, and the behavior of and with respect to SNR is
given by the following theorem.

Theorem 3 (Per-Node Information Versus SNR): The asymp-
totic per-node KLI for the hidden SFCAR model is contin-
uous and monotonically increasing as SNR increases for a given
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Fig. 4. � as a function of �: (a) SNR � 10 dB, (b) SNR � 0 dB, (c) SNR � �3 dB, (d) SNR � �5 dB.

edge dependence factor . Moreover, increases
with rate as . As SNR decreases to zero,
on the other hand, converges to zero and the rate of conver-
gence is given by

(49)

as , where is given by

(50)

The per-node MI has similar properties as a function of SNR,
i.e., it is a continuous and monotonically increasing function of
SNR. At high SNR, it increases with rate , whereas
it decreases to zero with rate of convergence

(51)

as , where is given by

(52)

Proof: See the Appendix I.

Note that the limiting behavior as is different
for and ; decays to zero quadratically while de-
creases linearly. Fig. 6 shows and with respect to SNR
for . The log SNR behavior is evident at high SNR for
both information measures. Note that and increase with
the same slope in the logarithmic scale with offset . This is
easily seen from (40) and (41) because the second term in the
integrand of (40) converges to , and thus
as SNR increases. However, the offset is negligible as SNR in-
creases. It is easy to see from (40) and (41) that for a given edge
dependence factor , the convergence between the two infor-
mation measures is characterized by as

.
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Fig. 5. Optimal � maximizing � versus SNR.

Fig. 6. � and � as functions of SNR �� � ����.

IV. Ad Hoc SENSOR NETWORKS: FUNDAMENTAL TRADEOFFS

AMONG INFORMATION, COVERAGE, DENSITY, AND ENERGY

Using the results of the previous sections, we now answer the
fundamental questions, raised in Section I, concerning planar
ad hoc sensor networks deployed over correlated random fields
for statistical inference under the 2-D hidden SFCAR GMRF
model. We first derive relevant physical correlation parameters
for the SFCAR from the corresponding continuous-index sto-
chastic model. Once the physical correlation parameters for the
SFCAR are obtained, the analysis of information obtainable
from an ad hoc sensor network and related trade-offs is straight-
forward.

A. Physical Correlation Model

We first derive how the physical correlation is related to the
edge dependence factor in the 2-D SFCAR model. The edge
correlation coefficient is defined as

(53)

due to the spatial symmetry, where . rep-
resents the correlation strength between the signal samples of
two adjacent sensor nodes connected by the Markov dependence
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Fig. 7. (a) Edge dependence factor � versus edge correlation coefficient � and (b) � versus edge length � .

graph defined by the SFCAR model. The edge correlation coef-
ficient is obtained using the following relationship [21]:

(54)

and by substituting (38) and (54) into (53), we have

(55)

Note that the correlation coefficient is not dependent on the
power factor in (35), as expected, even though and
are. Note that function is a continuous and dif-
ferentiable function on the domain due to
the continuous differentiability of for , and

by . Note also
that since . Thus, the inverse mapping

from the edge correlation factor to the edge de-
pendence factor , which maps zero and one to zero and ,
respectively, behaves as shown in Fig. 7(a).

Now we consider the correlation coefficient as a function
of the sensor spacing . In general, the correlation function

is a positive and monotonically decreasing function
of with and . It is well known that for
the 1-D first-order AR signal a corresponding underlying (con-
tinuous-index) physical model is given by the Ornstein–Uhlen-
beck process

(56)

and its discrete-time equivalent is given by

(57)

where , , , and the input processes
and are zero-mean white Gaussian processes. Here,

is the spacing between two adjacent signal samples. For the 2-D
SFCAR signal, however, the same stochastic differential equa-
tion is not applicable. Note that the dependence in the signal in

(56) and (57) is only on the past in 1-D space, whereas the signal
(34) has symmetric dependence in all four direction in the plane.
The SFCAR signal is given by the solution of a second-order
difference equation

(58)

and the corresponding continuous-index physical model is given
by the stochastic Laplace equation [23]

(59)

where is the physical diffusion rate, and and
are 2-D white zero-mean Gaussian perturbations. Note that the
solution of (59) is circularly symmetric, i.e., it depends only on

, and samples of the solution of (59) on
lattice do not form a discrete-index SFCAR GMRF. How-
ever, (59) is still the continuous-index counterpart of (58), and
we use its correlation function for the SFCAR model. The cor-
relation function corresponding to (59) is given by [23]

(60)

where is the modified Bessel function of the second kind.
Fig. 7(b) shows the correlation function w.r.t. for . The
asymptotic behavior of is given by

as
(61)

The correlation function (60) can be regarded as the represen-
tative correlation in 2-D, similar to the exponential correlation
function in 1-D. Both functions decrease monotonically
w.r.t. . However, the 2-D correlation function is flat at
[23], i.e.,

(62)

and it decays with rate as . Note that the
2-D correlation function has in front of the exponential
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decay as . However, this polynomial term is not signif-
icant and the exponential decay is dominant for large . Thus,
we have , and for given physical parameters (with
a slight abuse of notation)

and

We will use the arguments SNR, , and for and prop-
erly as needed for exposition.

B. Scaling Laws in Ad Hoc Sensor Networks Over Correlated
Random Fields

In this subsection, we investigate the fundamental behavior of
wireless flat multihop ad hoc sensor networks deployed for sta-
tistical inference based on the 2-D hidden SFCAR model and the
corresponding correlation functions (55) and (60). We consider
several criteria for determining the efficiency of the sensor net-
work. Specifically, we consider the total amount of information
[nats] obtainable from the network and the energy efficiency
of a sensor network, defined as

total gathered information
total required energy

nats/J (63)

where the gathered information is about the underlying physical
process.

In the following, we summarize the assumptions for the
planar ad hoc sensor network that we consider.

(A.1) sensors are located on the grid with spacing ,
as shown in Fig. 2, and a fusion center is located at the center

. The network size is , where .
Thus, the node density on is given by

(64)

(A.2) The observations of sensor nodes form a 2-D
hidden (discrete-index) SFCAR GMRF on the lattice for each

, and the edge dependence factor is given by the correla-
tion functions (55) and (60).

(A.3) The fusion center gathers the measurements from all
nodes using minimum hop routing. Note that the links in Fig. 2
are not only the Markov dependence edges but also the routing
links. The minimum hop routing requires a hop count of

to deliver to the fusion center.
(A.4) The communication energy per link is given by

, where is the propagation loss factor of
the wireless channel.

(A.5) Sensing requires energy, and the sensing energy per
node is denoted by . Moreover, we assume that the measure-
ment SNR in (14) is linearly increasing w.r.t. , i.e.,

for some constant .

Remark 1: Assumption (A.2) facilitates the analysis. Since
discrete samples of a continuous-index GMRF do not form a
discrete-index GMRF almost surely, we assume that for each

sensor samples on form a discrete-index SFCAR GMRF,
and match the correlation between two neighboring nodes with
the physically meaningful correlation function (60).

Remark 2: In Assumption (A.3), we assume that there is no
data fusion during the information gathering, i.e., no in-network
data fusion. The fusion center collects the raw measurements
from all sensors.

Remark 3: We can also consider a routing graph different
from the Markov dependence graph in Fig. 2. For example,
sensors not directly connected to the transmitting node via the
Markov dependence edge can deliver the data to the fusion
center. However, this results in a reduced number of hops
with a larger hop length, and the corresponding routing path
consumes more energy. Thus, Assumption (A.3) of minimum
hop routing via the Markov dependence edge ensures least
energy consumption with a minimum hop routing strategy.

Remark 4: Assumption (A.5) does not imply that we can in-
crease the power of the underlying signal, but it means that we
can increase the SNR of effective sensor samples. Suppose that

joules are required for one sensing to obtain one sample
at location and the measure-

ment SNR of this sample is . Now assume that we have
identical subsensors at location and obtain samples

with one sample per each subsensor, requiring joules,
and we take an average of samples at location , yielding

, where denotes the sample
at the th subsensor at location . The measurement SNR of
the effective sample is given by assuming that
the measurement noise is i.i.d. across the subsensors. Thus, the
effective measurement SNR at each sensor can be increased lin-
early w.r.t. the sensing energy. However, this linear SNR model
is an optimistic assumption since the observation SNR may sat-
urate as the sensing energy is increased without bound in prac-
tical situation.

From here on, we consider various asymptotic scenarios and
investigate the fundamental behavior of ad hoc sensor networks
deployed over correlated random fields for statistical inference
under Assumptions (A.1)–(A.5). Our asymptotic analysis in the
previous sections enables us to calculate the total information

for large sensor networks. The total amount of information
is given approximately by the product of the number of sensor
nodes in the network and the asymptotic per-node information

or , i.e.,

or (65)

for KLI or MI, respectively. The total energy required for
data gathering via the minimum hop routing is given by

if odd
if even.

(66)

First, we consider an infinite area model with fixed density. In
this case, the number of sensor nodes per unit area is fixed and
the total area increases without bound as we increase . The
behavior of the information versus area and energy in this case
is given in the following theorem.
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Theorem 4 (Fixed Density and Infinite Area): For an ad hoc
sensor network with a fixed and finite node density and fixed
sensing energy per node, the total amount of information in-
creases linearly w.r.t. area, but the amount of gathered informa-
tion per unit energy decays to zero with rate

(67)

for any nontrivial diffusion rate , i.e., , as we
increase the area. Further, in this case the total amount of infor-
mation obtainable from the network as a function of total con-
sumed energy increases with rate of

total information (68)

for any propagation loss factor , as the total energy
consumed by the network increases without bound, i.e.,

.
Proof: See Appendix I.

Theorem 4 enables us to investigate the asymptotic behavior
of ad hoc sensor networks with fixed available energy per node.
From the detection perspective the error probability is given by

(69)

for large networks, where represents the total number of
sensor nodes in the network with coverage area . Now consider
that each node has a fixed amount of energy denoted by

. Then, the total energy in the network is given by

(70)

Note in this case that the total energy available in the network
increases linearly w.r.t. the number of sensor nodes. The asymp-
totic behavior of ad hoc networks with fixed per-node energy is
given by the following corollary to Theorem 4.

Corollary 3: For an ad hoc sensor network with a fixed and
finite node density, the information amount per sensor node di-
minishes to zero as the network size grows, i.e.,

(71)

if each sensor has a finite amount of available energy.
Proof: Substitute (68), (69), and (70) into , , and ,

respectively.

Corollary 3 states that a nonzero per-node information is not
achievable as the coverage increases without in-network data
fusion in the case that each node has only a fixed amount of
energy, which is the case in most network design with fixed
amount of battery. In this case, the per-node information scales
with as the network size grows. This result is by
the communication energy required for ad hoc routing without
in-network data fusion. Note from (66) that for the fixed density
and increasing area model the sensing energy increases quadrat-
ically with while the communication energy without in-net-
work data fusion increases cubically with since is fixed
w.r.t. . Hence, for ad hoc sensor networks with large coverage

areas, the communication energy dominates the sensing energy,
and both the energy efficiency for information and the per-node
information under fixed per-node energy constraint diminish to
zero because of the slower increasing rate of the total informa-
tion amount than that of the communication energy required for
ad hoc routing without in-network data fusion.

This diminishing energy efficiency and per-node information
under fixed per-node energy constraint can be fixed with in-net-
work data fusion. Suppose that in-network data fusion is per-
formed so that each node needs to deliver (aggregated) data only
to the neighboring node along the minimum hop route to the fu-
sion center in Fig. 2. In this case, the number of transmission as-
sociated with one node is just one and the total number of trans-
missions in the network is given by . So, the communica-
tion energy as well as the sensing energy increases quadratically
with . Since the total amount of information also increases
quadratically with , the total amount of information as a func-
tion of total energy is given, under this aggregation scenario, by

(72)

as we increase the area, and a nonzero energy efficiency and
a nonzero per-node information under fixed per-node energy
constraint are achieved. Thus, in-network data fusion is essential
for energy efficiency in large sensor networks.

Next, we consider the case in which the node density dimin-
ishes, i.e., . Especially, this case is of interest at high
SNR since at high SNR less correlated samples yield larger
per-node information, as seen in Section III-B1. However, the
per-node information is upper-bounded as , and the
asymptotic behavior is given by the following theorem.

Theorem 5: As , the per-node information and
converge to and ,

respectively, and the convergence rates are given by

(73)

and

(74)

with positive constants and .
Proof: See Appendix I.

Theorem 5 explains how much gain in information is ob-
tained from less correlated observation samples by making the
sensor spacing larger. Fig. 8 shows the per-node KLI and
the communication energy for each link as functions of
for , , and 10-dB SNR. The gain in informa-
tion is given by for large , whereas the required
per-link communication energy increases without bound, i.e.,

. Since the exponential term is domi-
nant in the gain as increases, the information gained by in-
creasing the sensor spacing decreases almost exponentially
fast, and no significant gain is obtained by increasing the sensor
spacing further after some point. Hence, it is not effective, in

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 30, 2009 at 08:52 from IEEE Xplore.  Restrictions apply.



SUNG et al.: INFORMATION FROM A WIRELESS SENSOR NETWORK OVER A CORRELATED RANDOM FIELD 2839

Fig. 8. Per-node information and per-link communication energy w.r.t. sensor spacing � (SNR � 10 dB, � � �, � � �).

terms of energy efficiency, to increase the sensor spacing too
much to obtain less correlated samples at high SNR.

From Theorem 5 we have seen that increasing the sensor
spacing is not so effective in terms of the information gain per
unit of consumed energy since the per-link communication en-
ergy increases without bound. On the other hand, the per-link
communication energy can be made arbitrarily small by de-
creasing the sensor spacing. To investigate the effect of dimin-
ishing communication energy as , we now consider
the asymptotic case in which the node density goes to infinity
for a fixed coverage area. In this case, the per-node information
decays to zero as since as , and

and converge to zero as , as shown in Sec-
tion III-B1. The asymptotic behavior in this case is given by the
following theorem.

Theorem 6 (Infinite Density Model): For the infinite density
model with a fixed coverage area with nontrivial diffusion rate

, the per-node information decays to zero with convergence
rate

(75)

for some constant as the node density . Hence, the
amount of total information from the coverage area converges
to the constant as . Furthermore, in the case of
no sensing energy, a nonzero energy efficiency is achievable
if the propagation loss factor , and even an infinite energy
efficiency6 is achievable under Assumption (A.4) if as

. has similar behavior.
Proof: See Appendix I.

Remark 5: The finite total information for the infinite den-
sity and fixed-area model follows our intuition. The maximum
information provided by the samples from the continuous-index
random field does not exceed the information between

6Of course, this is under Assumption (A.4) for any � � �. In reality, As-
sumption (A.4) is valid for � � � for some � � �.

and except in the case of spatially white fields. Here,
the relevance of (62) in 2-D is evident. From (62) we have

(76)

as since has slope zero at and
is a continuous and differentiable function of . In the 1-D

case, it is shown in [12] that is also a continuous and
differentiable function of for with

. However, the exponential correlation
has a nonzero slope at , and thus we have

(77)

as . The number of nodes in the space is given by
and for 2-D and 1-D, respectively, and in both
cases. Hence, the total amount of information from the coverage
space (given by the product of the per-node information and the
number of nodes in the space) converges to a constant both in
1-D and 2-D as the node density increases. Thus, any proper 2-D
correlation function w.r.t. the sample distance should have a flat
top at a distance of zero.

Remark 6: It is common that the propagation loss factor
for near-field propagation (i.e., ). Hence, infinite

energy efficiency is theoretically achievable under Assumption
(A.4) as we increase the node density for a fixed area assuming
that only communication energy is required. Note that the total
amount of information converges to a constant as we increase
the node density. So, the infinite energy efficiency is achieved
by diminishing communication energy as .

Remark 7: Considering the sensing energy, infinite energy
efficiency is not feasible even theoretically since we have in this
case

(78)

and

(79)
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as for fixed coverage area. In this case, the sensing en-
ergy is the dominant factor for low energy efficiency, and
the energy efficiency decreases to zero with rate . Thus,
it is critical for densely deployed sensor networks to minimize
the sensing energy or processing energy for each sensor.

In the infinite density model, we have observed that energy is
an important factor in efficiency. Now we investigate the change
of total information w.r.t. energy. There are many possible ways
to invest energy in the network. One simple way is to fix the node
density and coverage area and to increase the sensing energy.
We assume that the network size is sufficiently large so that our
asymptotic analysis is valid. The energy-asymptotic behavior in
this case is given in the following theorem under Assumptions
(A.1)–(A.5).

Theorem 7: As we increase the total energy consumed by
a sensor network (including both sensing and communication)
with a fixed node density and fixed area, the total information
increases with rate

total information (80)

as .
Proof: See Appendix I.

Theorem 7 suggests a guideline for investing the excess en-
ergy. It is not efficient in terms of the total amount of gathered
information to invest energy to improve the quality of sensed
samples from a limited area. This only provides an increase in
total information at a logarithmic rate. Note in Theorem 4 that
the information gain is given by

(81)

as we increase the coverage area with fixed density and sensing
energy even without in-network data fusion. Thus, the energy
should be spent to increase the number of samples by enlarging
the coverage area even if it yields less accurate samples. In this
way, we can achieve the information increase with rate at least

which is much faster than the logarithmic increase
obtained by increasing the sensing energy.

C. Optimal Node Density

In the previous subsection, we investigated the asymptotic be-
havior of the total information obtainable from the network and
the energy efficiency as the coverage, density, or energy change.
We now consider another important problem in sensor network
design for statistical inference about underlying random fields,
namely, the optimal density problem. Here, we are given a fixed
coverage area, and are interested in determining an optimal node
density. The total amount of information gathered from the net-
work increases monotonically (even if it has an upper bound) as
we increase the node density, as shown in Theorem 6. Hence,
the problem cannot be properly formulated without some con-
straint. We consider a total energy constraint in which a fixed
amount of energy is available to the entire network for both
sensing and communication. Thus, we consider the following
problem.

Problem 1 (Optimal Density): Given a fixed coverage area
with size and total available energy , find the density

that maximizes the total information obtainable from the
sensor network.

The above optimization problem can be solved using our
analysis based on the large deviations principle assuming the
asymptotic result is still valid in the low density case, and the
optimal density for the KLI measure is given by

(82)

s.t.

(83)

where the sensing energy as well as and are func-
tions of the node density . From , we first
calculate and then . (Here, the quantization of
to the nearest integer is not performed.) With the determined

, is obtained from the propagation parameters
and , and then is obtained from the constraint (83).
When is determined, the measurement SNR is calcu-
lated using Assumption (A.5), i.e., , and finally,
we evaluate the per-node information and

from Corollary 2.
Fig. 9 shows the total information obtainable from a 2-m

2–m area as we change the node density with a fixed total
energy budget of joules. Other parameters that we use are
given by

and

Here, the values of , , and are selected so that the min-
imum and maximum per-node sensing SNRs are roughly -10
to 10 dB for maximum and minimum densities, respectively.
The diffusion rate is chosen for the edge correlation
coefficient to range from almost zero to as the node den-
sity varies. It is seen in the figure that there is an optimal den-
sity for each value of under either information measure. It
is also seen that the total KLI is sensitive to the density change
whereas the total MI is less sensitive. The existence of the op-
timal density is explained as follows. At low densities, we have
only a few sensors in the area. So, the energy for communi-
cation is not large due to the small number of communicating
nodes (see (108) below) and most of the energy is allocated to
sensing. Here, the per-node sensing energy is even higher due
to the small number of sensors. However, the per-node informa-
tion increases only logarithmically w.r.t. the sensing energy or
SNR by Theorem 7, and this logarithmic gain cannot compen-
sate for the loss in the number of sensors. Hence, low density
yields very poor performance, and large gain is obtained ini-
tially as we increase the density from very low values, as seen in
Fig. 9. As we further increase the density, on the other hand, the
per-node sensing energy or SNR decreases due to the increase
in the overall communication and the increase in the number
of sensor nodes, and the measurement SNR is in the low-SNR
regime eventually, where (49) and (51) hold. From (66), we have

(84)
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Fig. 9. (a) Total KLI versus density and (b) total MI versus density.

for fixed and , as . By the quadratic
decaying behavior of at low SNR given by (49), the total
KLI is given by

total KLI

By (51), on the other hand, the mutual information decays lin-
early as SNR decreases to zero, and the total MI is given by

total MI

This explains the initial fast decay after the peak in Fig. 9(a)
and flat curve in Fig. 9(b). In the above equations, however, the
effect of on and is not considered. As the node den-
sity increases, the sensor spacing decreases and the edge depen-
dence factor increases for a given diffusion rate . The be-
havior of the per-node information as a function of is shown
in Fig. 4. Note in Fig. 4 that the per-node information has a
second lobe at strong correlation at low SNR while at high SNR
it decreases monotonically as the correlation becomes strong.
The benefit of sample correlation is evident in the low energy
case 50 [ J in Fig. 9(a); the second peak around
95 [nodes/m ] is observed. Note that the second peak is not
very significant. Since the per-node information decays to zero
as eventually, the total amount of information de-
creases eventually, as seen in the right corner of the figure, as
we increases the node density further.

V. CONCLUSION AND DISCUSSION

In this paper, we have considered the design of sensor net-
works for statistical inference about correlated random fields
in a 2-D setting. To quantify the information from the sensor
network, we have used a spectral domain approach to derive
closed-form expressions for asymptotic KLI and MI rates in
general -D and in 2-D in particular, and have adopted the 2-D
hidden CAR GMRF for our signal model to capture the spa-
tial correlation and measurement noise for samples in a 2-D
sensor field. Under the first-order symmetry assumption, we
have further obtained the asymptotic information rates explic-
itly in terms of the SNR and the edge dependence factor, and

have investigated the properties of the asymptotic information
rates as functions of SNR and correlation. Based on these LDP
results, we have then analyzed the asymptotic behavior of ad
hoc sensor networks deployed over 2-D correlated random fields
for statistical inference. Under the SFCAR GMRF model, we
have obtained fundamental scaling laws for total information
and energy efficiency as the coverage, node density, and con-
sumed energy change. The results provide guidelines for sensor
network design for statistical inference about 2-D correlated
random fields such as temperature, humidity, or density of a gas
on a certain area.

In closing, we discuss several issues related to some of the
assumptions we have used to simplify our analysis. First, of
course, sensors in a real network may not be located on a 2-D
grid. However, we conjecture that similar scaling behaviors
w.r.t. the coverage, density and energy are valid for randomly
and uniformly deployed sensors. Second, the spatial Markov
assumption may be restrictive. However, it is a minimal model
that captures the two-dimensionality of the signal correlation
structure in all planar directions and allows analysis to be
tractable. And, finally, we have not considered the temporal
evolution of the spatial signal field. In case of i.i.d. temporal
variation, the results here can be applied directly without mod-
ification. When the signal variation over time is correlated, the
modification to spatiotemporal fields is required.

APPENDIX I

Proof of Theorem 2:

The asymptotic KLI rate is given by the almost-sure limit

(85)

evaluated under [24]. We consider the following index map-
ping from -D to 1-D in lexicographic order:

(86)

and the corresponding observation vector generated from
. Then, is a zero-mean Gaussian vector with
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the covariance matrices and under and ,
respectively. Hence, the asymptotic KLI rate is given by

(87)

under . Now we consider the terms on the RHS of (87). First,
we consider . Since under the
assumption of an i.i.d. null distribution, we simply have

(88)

Next, we consider the term . Since
is i.i.d. Gaussian, -D is irrelevant in this case, the known result
from [25, Proposition 10.8.3] is applicable, and we have

almost surely (89)

assuming that the random vector is generated from the
distribution . Now we consider the term .
This is the entropy rate of a -D Gaussian process, and the con-
vergence behavior of this term is studied in [18]. It is shown in
[18, p. 391] under the assumption in Theorem 2 that we have

Applying this result, we have

(90)
Finally, we consider the random term .7

By Lemma 2 in Appendix II, we have

(91)
almost surely as .

Combining (87)–(91), we have

(92)

Since

(93)

7The proof given in [25] and [26] for the convergence of this term for the 1-D
index case is not applicable for general �-D, nor is the almost-sure convergence
of the term shown in [18], where the convergence of the term in probability to an
integral involving the periodogram was shown. Thus, we prove the almost-sure
convergence of the term in Lemma 2 separately in Appendix II.

equation (92) is given by

(94)

Proof of Corollary 1:

For the 2-D hidden model we have

(95)

where is the CAR spectrum (11) in 2-D satisfying
(12) and (13). First, has a positive lower bound, and
thus satisfies Assumption A.1 in Theorem 2. It is also known in
[27] that if and if is of class
(i.e., differentiable up to the -order w.r.t. ), then

(96)

where is the set of all natural numbers, and means
that at least one coordinate tends to infinity. Under the condition
(12) and (13), the hidden CAR spectrum in (95) is

, i.e., smooth both in and . This ensures that As-
sumption A.2 in Theorem 2 is satisfied, and the corollary follows
by substituting (95) and into (26).

Proof of Theorem 3:

The continuity is straightforward. The monotonicity is shown
as follows. Let where

Then, the partial derivative of w.r.t. is given by

(97)

where

(98)
and

(99)

for . Hence,

(100)

and increases monotonically as SNR increases for a given
.

As SNR , we have
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Thus, we have behavior at high SNR.
For (49) and (51), take the Taylor expansion around

to obtain

and then integrate.

Proof of Theorem 4:

In this case, the edge length for all , and thus the
asymptotic per-sensor information or does not
change with . Considering the KLI , we have ,
and . Hence, the total information is linear w.r.t.
area. The total energy required for data gathering is given by

(101)

where the first term is the sensing energy and the second term is
the energy consumed for communication. The energy efficiency
is given by

(102)

as . Since , (67) follows.
For the second statement, we have . The total

information is given by . Since is fixed, the
total information is as , and we have (68).

Proof of Theorem 5:

The proof is by the asymptotic behavior of the modified
Bessel function of the second kind and Taylor expansion
of (as a function of ) and (as a function of ), which
is allowed because of their continuous differentiability. From
(60) and (61) we have

(103)

as . From the continuous differentiability of as a
function of in (47) and as a function of , we have

for some . Applying (103) to the above equation, we
have (73). The proof for the mutual information is similar.

Proof of Theorem 6:

Consider a fixed area with size and a lattice on it.
The sensor spacing for is given by

By (62), we have

(104)

for some constant . By the continuous differentiability of
(as a function of ) and (as a function of ), we have

and

for some constant . Substituting (104) into the above equa-
tions gives

(105)

for some constant . The node density is given by

(106)

Substituting (106) into (105) yields (75). The total amount of
information per unit area is given by

(107)

and it converges to as .
To calculate the energy efficiency, we first calculate the total

communication energy consumed by the minimum hop routing,
given by

(108)

as (i.e., ). Here, denotes the total energy
considering only the communication energy. The energy effi-
ciency in this case is given by

[ nats/J/ m ] (109)

Applying (107) and (108) to the above equation, we have the
claims.

Proof of Theorem 7:

Note that
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In this case, and are fixed, and Theorem 3 is directly appli-
cable. Since the number of nodes and communication energy are
fixed, the sensing energy increases linearly with the total energy

. By Assumption (A.5), the measurement SNR increases lin-
early with the sensing energy. Applying Theorem 3 yields (80).

APPENDIX II

To prove Lemma 2 (this will be stated below), we briefly in-
troduce some relevant preliminary results.

Definition 5 (Matrix Norms [18], [28]): Let be an
matrix with singular value decomposition

(110)

where and are unitary matrices with columns and ,
respectively, and with nonnegative
elements . The operator norm of is
defined as

(111)

where denotes the -norm of . On the other hand, the trace
class norm of is defined as

(112)

Note that if is a symmetric matrix with eigenvalues , then

(113)

Remark 8 (The Covariance Matrix and its Circulant Ap-
proximation): Using vector notation, the covariance matrix of
the vector in (29) under is given by

(114)

where is defined in (23) and is defined in (86). With slight
abuse of notation, we use for for the sake of
exposition.

The circulant approximation to is obtained
by treating as a high-dimensional torus with opposite ends
being neighbors, and is given by

(115)

where the mapping is defined as

(116)

and

(117)

Here,8 is the indicator function. Note that is a block
Toeplitz matrix, while is a block circulant matrix. It is

8The distinction of even and odd � will not be considered for simplicity, as
this is merely a technical issue. In either case, the asymptotic behavior is the
same.

known that the eigenvalues of the block circulant matrix
are given by

(118)

for , where

(119)
Define the periodic approximate spectral density by

(120)

Then, the eigenvalues of are given by

(121)

Further, it is shown in [18, Lemma 4.1.(c)] that the periodic
approximate spectral density converges uniformly to the true
spectral density , i.e.,

(122)

as .

Lemma 1: Under the assumption of Theorem 2, we have
the following.

(a) is uniformly continuous for sufficiently large .
(b)

as (123)

(c) is uniformly continuous for sufficiently large .
Proof of Lemma 1:

(a) By assumption, is continuous on the compact do-
main . By the uniform continuity theorem, is uni-
formly continuous. For any , imples

for sufficiently large . The convergence of the first and third
terms is by (122) and that of the second term is by the uniform
continuity of .

(b) Since the spectrum has a positive lower bound by
assumption, its inverse is bounded from above. In ad-
dition, due to (122) there exists such that

and (124)

for all and for sufficiently large . Then, for any

(125)

(126)
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for all and for sufficiently large , by (122) and
(124).

(c) For any , implies

for sufficiently large . The convergence of the first and third
terms is by (123) and that of the second term is by the uniform
continuity of . (The uniform continuity of is
obvious due to the uniform continuity and strict positivity of

.)

Lemma 2: Under the conditions of Theorem 2, we have

almost surely.
Proof of Lemma 2: First, it is shown in [18, Lemma 4.1.(a)]

that

(127)

as . Let be the eigen-
values of , where for -D.
Then, by (113) and (127) we have

(128)

Since the convergence of the eigenvalues of the block Toeplitz
matrix and its block circulant approximation is
uniform (the eigenvalues of these matrices are the samples of
the corresponding spectra for sufficiently large ; see (121) and
(122)), and have the same con-
vergence rate, i.e., there exist , , and such that

(129)

By (128) and (129) we have

(130)

Since the spectra and have positive lower
bounds by assumption, their inverses and are
bounded from above. Hence, the eigenvalues of and

are bounded from above since the eigenvalues of these
matrices are the samples of the corresponding inverse spectra
for sufficiently large , and thus we have

and (131)

for all sufficiently large .

Now consider the error between two quadratic terms

(132)

for some . Here, step is by (131) and the definition
of the trace class norm (113), step is by (129), and step

is by (130). Step is by the strong law of large numbers
(SLLN) on the sample mean of . Since is i.i.d.
under , almost surely. Thus, the quadratic
form using the block circulant approximation converges almost
surely to that based on the true covariance matrix.

We next consider the asymptotic behavior of
. Since is a block circu-

lant matrix, the eigendecomposition is given by [29], [30]

(133)

where is the -dimensional discrete Fourier transform
(DFT) matrix which is unitary, and

(134)

The inverse of is given by

(135)

Define

(136)

Then, is a vector of i.i.d. Gaussian random variables since
is unitary and is a vector with i.i.d. Gaussian ele-

ments under . Thus, is given by

(137)

(138)

where is i.i.d. zero-mean Gaussian with variance
. For sufficiently large , fix ( ) and divide the

indices of each dimension such that

if and
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Then, (138) is given by

(139)

Now let denote the index representing the
center of the th hypercube. Then, by (121) we have

(140)

(141)

and

(142)

for all in the th hypercube. Here,
is independent of since is

uniformly continuous over by Lemma 1 (c).
Applying (142)–(139), we have

(143)

where

(144)

By the SLLN for the sample mean of , we have

(145)

almost surely for sufficiently large given . Thus, is given
by

(146)

where

(147)

Now we take , and the Riemann sum converges to

(148)

by Lemma 1 (b) and (c). Since and can be
made arbitrarily small by making and large, and

for some and
a.s., we have by (143), (146), and (148),

that

(149)
almost surely as . By (132) and (149) we have

(150)

almost surely as . This concludes the proof.

REFERENCES

[1] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the phys-
ical world with pervasive networks,” IEEE Pervasive Computing, vol.
1, pp. 59–69, Jan.–Mar. 2002.

[2] J.-F. Chamberland and V. V. Veeravalli, “How dense should a sensor
network be for detection with correlated observations?,” IEEE Trans.
Inf. Theory, vol. 52, no. 11, pp. 5099–5106, Nov. 2006.

[3] M. Dong, L. Tong, and B. M. Sadler, “Impact of data retrieval pat-
tern on homogeneous signal field reconstruction in dense sensor net-
works,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4352–4364,
Nov. 2006.

[4] Y. Sung, X. Zhang, L. Tong, and H. V. Poor, “Sensor configuration
and activation for field detection in large sensor arrays,” IEEE Trans.
Signal Process., vol. 56, no. 2, pp. 1354–1365, Feb. 2008.

[5] L. S. Pillutla and V. Krishnamurthy, “Mutual information and energy
tradeoff in correlated wireless sensor networks,” in Proc. 2008 IEEE
Int. Conf. Communications (ICC), Beijing, China, May 2008, pp.
4402–4406.

[6] F. Liese and I. Vajda, “On divergence and informations in statistics
and information theory,” IEEE Trans. Inf. Theory, vol. 52, no. 10, pp.
4394–4412, Oct. 2006.

[7] S. Kullback, Information Theory and Statistics. Mineola, NY: Dover,
1997.

[8] M. D. Donsker and S. R. S. Varadhan, “Large deviations for stationary
Gaussian process,” Commun. Math. Phys., vol. 97, pp. 187–210, 1985.

[9] G. R. Benitz and J. A. Bucklew, “Large deviation rate calculations for
nonlinear detectors in Gaussian noise,” IEEE Trans. Inf. Theory, vol.
36, no. 2, pp. 358–371, Mar. 1990.

[10] W. Bryc and A. Dembo, “Large deviations for quadratic functionals of
Gaussian processes,” J. Theor. Probab., vol. 10, no. 2, pp. 307–332,
1997.

[11] B. Bercu, F. Gamboa, and A. Rouault, “Large deviations for quadratic
forms of stationary Gaussian processes,” Stochastic Processes and
Their Applications, vol. 71, pp. 75–90, 1997.

[12] Y. Sung, L. Tong, and H. V. Poor, “Neyman–Pearson detection of
Gauss–Markov signals in noise: Closed-form error exponent and prop-
erties,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1354–1365, Apr.
2006.

[13] A. S. Leong, S. Dey, and J. S. Evans, “Error exponents for
Neyman-Pearson detection of Markov chains in noise,” IEEE Trans.
Signal Process., vol. 55, no. 10, pp. 5097–5103, Oct. 2007.

[14] A. Anandkumar, L. Tong, and A. Swami, “Detection of Gauss-Markov
random field on nearest-neighbor graph,” in Proc. 2007 IEEE Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP’07), Honolulu, HI,
Apr. 2007, pp. III-829–III-832.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 30, 2009 at 08:52 from IEEE Xplore.  Restrictions apply.



SUNG et al.: INFORMATION FROM A WIRELESS SENSOR NETWORK OVER A CORRELATED RANDOM FIELD 2847

[15] Y. Sung, H. V. Poor, and H. Yu, “Information, energy and density for
ad hoc sensor networks over correlated random fields: Large deviations
analysis,” in Proc. 2008 Int. Symp. Information Theory (ISIT), Toronto,
ON, Canada, Jul. 2008, pp. 1592–1596.

[16] H. Rue and L. Held, Gaussian Markov Random Fields: Theory and
Applicatons. New York: Chapman & Hall/CRC, 2005.

[17] R. R. Bahadur, S. L. Zabell, and J. C. Gupta, “Large deviations, tests,
and estimates,” in Asymptotic Theory of Statistical Tests and Estima-
tion: In Honor of Wassily Hoeffding, I. M. Chakravarti, Ed. New
York: Academic, 1980.

[18] J. T. Kent and K. V. Mardia, “Spectral and circulant approximations to
the likelihood for stationary Gaussian random fields,” J. Statist. Plan-
ning and Inference, vol. 502, no. 3, pp. 379–394, 1996.

[19] R. R. Bahadur, “Some limit theorems in statistics,” in Proc. Conf. Board
of the Mathematical Sciences Regional Conferences (Series in Applied
Mathematics), Philadelphia, PA, 1971.

[20] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[21] J. Besag, “On a system of two-dimensional recurrence equations,” J.
Roy. Statist. Soc. Ser. B, vol. 43, no. 3, pp. 302–309, 1981.

[22] A. Erdélyi, Higher Transcendental Functions, Vol. II. New York: Mc-
Graw-Hill, 1953.

[23] P. Whittle, “On stationary processes in the plane,” Biometrika, vol. 41,
pp. 434–449, Dec. 1954.

[24] I. Vajda, Theory of Statistical Inference and Information. Dordrecht,
The Netherlands: Kluwer Academic, 1989.

[25] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods,
2nd ed. New York: Springer, 1991.

[26] E. J. Hannon, “The asymptotic theory of linear time-series models,” J.
Appl. Probab., vol. 10, pp. 130–145, Mar. 1973.

[27] X. Guyon, Random Fields on a Network: Modeling, Statistics and Ap-
plications. New York: Springer-Verlag, 1995.

[28] I. Gohberg, S. Goldberg, and M. A. Kaashoek, Basic Classes of Linear
Operators. Basel, Switzerland: Birkhäuser, 2004.

[29] R. J. Martin, “A note on the asymptotic eigenvalues and eigenvectors
of the dispersion matrix of a second-order stationary process on a �-di-
mensional lattice,” J. Appl. Probab., vol. 23, pp. 529–535, Jun. 1986.

[30] P. J. Davis, Circulant Matrices. New York, NY: Chelsea, 1994.

Youngchul Sung (S’92–M’93–SM’09) received the B.S. and M.S. degrees in
electronics engineering from Seoul National University, Seoul, Korea, in 1993
and 1995, respectively, and the Ph.D. degree in electrical and computer engi-
neering from Cornell University, Ithaca, NY, in 2005.

From 2005 until 2007, he worked as a Senior engineer in the Corporate R &
D Center at Qualcomm, Inc. , San Diego, CA. He is now an Assistant Professor
in the Department of Electrical Engineering in Korea Advanced Institute of Sci-
ence and Technology (KAIST), Daejeon, Korea. His research interests include
statistical signal processing, asymptotic statistics, large deviations, and their ap-
plications to wireless communication systems and related areas.

H. Vincent Poor (S’72–M’77–SM’82–F’77) received the Ph.D. degree in elec-
trical engineering and computer science from Princeton University, Princeton,
NJ, in 1977.

From 1977 until 1990, he was on the faculty of the University of Illinois
at Urbana-Champaign, Urbana, IL. Since 1990, he has been on the faculty at
Princeton University, where he is the Dean of Engineering and Applied Science,
and the Michael Henry Strater University Professor of Electrical Engineering.
His research interests are in the areas of stochastic analysis, statistical signal pro-
cessing and their applications in wireless networks, and related fields. Among
his publications in these areas are the recent books MIMO Wireless Communica-
tions (Cambridge University Press, 2007), coauthored with Ezio Biglieri et al.,
and Quickest Detection (Cambridge University Press, 2009), coauthored with
Olympia Hadjiliadis.

Dr. Poor is a member of the National Academy of Engineering, a Fellow of
the American Academy of Arts and Sciences, and a former Guggenheim Fellow.
He is also a Fellow of the Institute of Mathematical Statistics, the Optical So-
ciety of America, and other organizations. In 1990, he served as President of the
IEEE Information Theory Society, and from 2004 to 2007 as the Editor-in-Chief
of these TRANSACTIONS. He is the recipient of the 2005 IEEE Education Medal.
Recent recognition of his work includes the 2007 IEEE Marconi Prize Paper
Award, the 2007 Technical Achievement Award of the IEEE Signal Processing
Society, and the 2008 Aaron D. Wyner Distinguished Service Award of the IEEE
Information Theory Society.

Heejung Yu (S’07) received the B.S. degree in radio science and engineering
from the Korea University, Seoul, Korea, in 1999 and the M.S. degree in elec-
trical engineering from Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea, in 2001.

He is currently working toward the Ph.D. degree in the Department of Elec-
trical Engineering, KAIST. From 2001 to 2006, he was with the Electronics
and Telecommunications Research Institute (ETRI), Daejeon, Korea. His areas
of interest include statistical signal processing and communication theory.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 30, 2009 at 08:52 from IEEE Xplore.  Restrictions apply.


