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Simpler Condition for Theorem 2
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Theorem 2 (Asymptotic KLI rate in d-D] Suppose that
A.1 the alternative spectrum f1(ω) has a positive lower bound, and
A.2 ∃ M < ∞ such that ∀ k = 1, 2, · · · , d,

∑

h∈Zd(1 + |hk|)|γh| < M.

Then, the asymptotic KLI rate K for (24) is given by
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where D(·||·) denotes the Kullback-Leibler distance.

Lemma 1: (Guyon, 1995 [27, Page 2]) If k = (k1, · · · , kd) ∈ N
d and if f1(ω) is of class Ck (i.e., differentiable

up to the kd-order w.r.t. ωd), then
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d |γh| < ∞, (3)

where N is the set of all natural numbers, and h → ∞ means that at least one coordinate tends to infinity.

Using the above lemma, (A.2) of Theorem 2 can be modified as an intuitive one, given in Theorem 2’.

Theorem 2’ (Asymptotic KLI rate in d-D) Suppose that
A.1 the alternative spectrum f1(ω) has a positive lower bound, and
A.2 f1(ω) is more than twice differentiable.
Then, the asymptotic KLI rate K for (24) is given by
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where D(·||·) denotes the Kullback-Leibler distance.

Proof: The proof is by showing that more than twice differentiability of spectrum is sufficient to satisfy
the assumptions of Theorem 2. By Lemma 1, we have
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since f1(ω1, ω2, · · · , ωd) ∈ C(2+ǫ,2+ǫ,···,2+ǫ). Then,
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Similarly, for 2 ≤ k ≤ d, we have
∑

(h1,h2,···,hd)∈Zd |hk||γh1,h2,···,hd
| < ∞. Hence, more than twice differentiabil-

ity of spectrum is sufficient for (A.2) and the strong convergence. �

Weaker conditions may be possible. Note that in 1-D case, a known sufficient condition for strong conver-
gence is that the null and alternative spectrum have finite lower and upper bound, and are continuous and
strictly positive. Also, the absolute summability of the covariance function guarantees a well defined spectrum
(i.e., upper bounded spectrum) in 1-D case.


