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Abstract —

The problem of combining task performance with

network-layer routing for the detection of correlated

random fields is considered. Under the assumption of

the Gauss-Markov structure along a given route, an

optimal data aggregation algorithm is provided, and a

performance metric that captures the detection per-

formance is derived. It is shown that the logarithm

of innovation variance is a reasonable choice for a link

metric at high signal-to-noise ratio. An explicit for-

mula for the metric as a function of the link length

is also derived. The proposed metric can be used to

select an optimal route yielding the best detection

performance.

I. Introduction

Conventional multi-hop wireless ad hoc networks focus on
the communication between nodes. The routing in such net-
works is primarily based on link metrics such as the hop count,
minimum delay, traffic amount, etc. For energy-limited sensor
networks different metrics such as the battery power of nodes,
necessary transmission power between neighboring nodes have
also been considered to distribute routes evenly over the net-
work and enlarge the lifetime of networks [1, 2, 3, 4]. However,
the main purpose of sensor networks lies in specific applica-
tions such as detection, monitoring, tracking, etc., using col-
laborative processing between sensor nodes. Hence, it is desir-
able to incorporate the performance of these tasks into routing
in sensor networks. Examples of cross-layer approaches can be
found in [5, 6, 7, 8, 9]. In particular, in [9] the authors inves-
tigated the effect of spatial correlation between signal sources
on routing and data compression via the total energy con-
sumption in the network to transfer overall information to a
gateway node.

In this paper, we consider a cross-layer approach to combin-
ing the task performance at the application layer with routing
at the network layer for detection applications in large-scale
sensor networks. Specifically, we consider the detection of a
spatially correlated random field using sensors deployed over
a geographical region, where each sensor on a route to a gate-
way node receives the data from a neighboring sensor and
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Figure 1: Detection and route selection: (a) Gateway
node initiated detection, (b) sensor initiated
detection.

also makes its own measurement of the phenomenon of inter-
est at its location. The assumption of spatial correlation is
appropriate for large sensor networks, especially for densely
deployed ones. The spatial correlation can affect the per-
formance of detection based on different routes significantly.
That is, different routes result in distinct detection perfor-
mances at the gateway node even if the number of sensors
on routes is the same. (For commonly assumed independent
and identically distributed (i.i.d.) signal fields, however, the
geometry of routes to the gateway node is irrelevant and the
performance depends only on the number of sensors or ob-
servations on a route.) Thus, for correlated signal cases it is
natural to ask “which route gives the best detection perfor-
mance, and what are the factors of a route that affect the
detection performance?”

I.A Summary of Results

We present a framework of combining the route selection
and detection performance for multi-hop sensor networks. Our
focus and contribution in this paper are twofold. First, we de-
rive an optimal data aggregation algorithm for the detection of
correlated random fields based on the location of sensors along
a fusion route. Second, we obtain a link metric that captures
the detection performance for a given route. To this goal, we
simplify the correlation structure of signal fields of interest
using the Gauss-Markov model and choose the error probabil-
ity of the optimal detection based on the observation along a
route as the performance criterion. Since the exact error prob-
ability of the optimal detection of correlated Gaussian signals
is not available, we apply the Chernoff bound [10] that pro-
vides a tight upper bound on the detection error probability
for large sample cases. However, the conventional expression
of the Chernoff bound is given in terms of the eigenvalues of



2the covariance matrix of signal samples [11], which does not
allow the decomposition of the overall performance into a sum
of the incremental performance gain at each link.

Our approach to this problem is to exploit the expression of
log-likelihood via the innovations representation [12]. By ex-
pressing the log-likelihood ratio in terms of the innovation at
each link of a fusion route, we obtain an additive incremental
cost at each link for the error bound. It is shown that the log-

arithm of the innovation variance at each link is a reasonable
choice as a link metric to select an optimal route that gives
the best detection performance at high signal-to-noise ratio
(SNR). This metric can be easily calculated using the field
diffusion coefficient and sensor locations. We also provide an
explicit formula for the proposed metric as a function of the
link length.

The remainder of the paper is organized as follows. In
Section II we describe the signal model and a location-based
optimal fusion algorithm. In Section III we derive a new link
metric for the detection performance. Some discussion is pre-
sented about the results in Section IV, followed by the con-
clusion in Section V.

II. System Model and Optimal Data

Aggregation

We consider the detection of a correlated random field S
over a two-dimensional space X using sensors deployed over
X under the Bayesian formulation, where the hypotheses H0

and H1 represent the event of no signal and the presence of
signal S over X, respectively. We assume that the signal field
is static during the time period of observation and processing.
We also assume that each sensor knows its own location and
sensor observations are delivered to a gateway node via multi-
hop routes. Since sensors are located within the signal field,
each sensor on a route to the gateway node not only transfers
data from the previous sensor but also makes its own obser-
vation (corrupted by the measurement noise) and delivers the
aggregated data to the next sensor on the route. Thus, data
fusion occurs along the route, and the final decision is made
at the gateway node.

Suppose that a fusion route traverses sensor nodes N1, N2,
· · · , Nn where Nn is the gateway node. Let R(N1, · · · , Nn) de-
note this fusion route. To make further development tractable,
we make the following assumption on the correlation structure
of the random field S.

A 1 For any open simple route R traversing an arbitrary set

of nodes contained in X, the signal along R forms an one-

dimensional stationary Gauss-Markov process, and the signal

model is given by

ds(l)

dl
= −As(l) + Bu(l), 0 ≤ l ≤ |R|, (1)

where |R| denotes the length of the route R, diffusion coeffi-

cients A ≥ 0 and B are known, and the initial condition is

given by s(0) which has Gaussian distribution N (0, Π0) with

Π0 = B2

2A
. The process noise u(l) is zero-mean white Gaussian

with unit variance, independent of both s(0) and the measure-

ment noise of sensor.

Here, A represents the diffusion rate of the signal field with re-
spect to distance. Assumption 1 may be an oversimplification
for general correlation and curve shapes. However, it is rea-
sonable for a class of curves that are almost straight contained
in a homogeneous Gauss-Markov field.

II.A Optimal data fusion

In this section we present a location-based optimal data
fusion algorithm along a given route under Assumption 1.
Suppose that we have a fusion route R(N1, · · · , Nn) and the
location of the n sensor nodes along the route is given by
{xi, i = 1, · · · , n}. Then, the hypotheses for the observations
along the route are given by

H0 : yi = wi,
H1 : yi = si + wi, i = 1, 2, · · · , n,

(2)

where yi is the observation at node Ni, si
∆
= s(xi), and {wi}

are i.i.d. sensor measurement noises from N (0, σ2) with a
known variance σ2. The prior probabilities of H0 and H1 are
given by π0 and π1, respectively. Under Assumption 1 the
dynamics of signal sample si at node Ni are described by the
following state-space model:

si+1 = aisi + ui, (3)

ai = e−A∆i ,

ui ∼ N (0, Π0(1 − a2
i )),

where the distance between two neighboring sensors on the
route ∆i = ||xi+1 − xi||. Due to the stationarity of the field,
the variance of si is Π0 for all i, and the SNR† for the obser-
vations is given by

SNR =
Π0

σ2
. (4)

The optimal detector for (2) is given by a likelihood ratio
detector:

δB(yn
1 ) =

{

H1, T
∆
= log

p1(yn
1 )

p0(yn
1 )

≥ τ
∆
= log π0

π1
,

H0, o.w.,
(5)

where yi
1

∆
= {y1, y2, · · · , yi} and pj(y

n
1 ), j = 0, 1, is the joint

probability density of yn
1 under hypothesis Hj . The likelihood

under H0 is simply given by

p0(y
n
1 ) =

1

(2πσ2)n/2
e
− 1

2σ2

∑n
i=1 y2

i . (6)

Given the signal evolution (3), the log-likelihood under H1

is easily calculated by the Kalman recursion along the route
[12], which eliminates the necessity of delivering all the ob-
servations to the gateway node. The well-known data fusion
using the Kalman recursion can be readily combined with the
location information of sensors.

Define li
∆
= log p1(y

i
1). Then, we can decompose li using

p1(y
i
1) = p1(y

i−1
1 )p1(yi|y

i−1
1 ). (7)

Hence, we have

li = li−1 + log p1(yi|y
i−1
1 ). (8)

Since the joint distribution of {y1, y2, · · · , yi} is Gaussian from
Assumption 1, the conditional distribution p1(yi|y

i−1
1 ) is also

Gaussian with mean E1{yi|y
i−1
1 } and variance Re,i. The log-

likelihood li upto the ith observation along the route is ex-
pressed using the innovations representation by

li = li−1 −
1

2
log(2πRe,i) −

1

2

e2
i

Re,i
, (9)

†Note that here the SNR is the observation SNR not the SNR
of the communication signal to the receiver noise.



3where the innovation is given by ei
∆
= yi − ŷi|i−1 with variance

Re,i = E1{e
2
i } and the minimum mean square error (MMSE)

prediction ŷi|i−1 of yi given yi−1
1 is the conditional expectation

E1{yi|y
i−1
1 }. Thus, the log-likelihood under H1 is given by [12]

log p1(yn) = ln = −
1

2

n
∑

i=1

log(2πRe,i) −
1

2

n
∑

i=1

e2
i

Re,i
. (10)

Eq. (9) provides a recursive structure of a location-based
fusion algorithm for the detection by incorporating the state-
space model (3). The algorithm is described by the following
steps.

Algorithm 1 (Location-based optimal data fusion)

1. Initialization at one end of a route.

• ŝ1|0 = 0, P1|0 = Π0, l0 = 0.

2. Update at each sensor.

• Calculation at current sensor.

ei = yi − ŝi|i−1,

Re,i = Pi|i−1 + σ2, (11)

li = li−1 −
1

2

(

log(2πRe,i) +
e2

i

Re,i

)

.

• Incorporation of location information.

∆i = ||xi+1 − xi||, (12)

ai = e−A∆i , Qi = Π0(1 − a2
i ). (13)

• Prediction for next sensor.

Kp,i = (aiPi|i−1)/Re,i, (14)

ŝi+1|i = aiŝi|i−1 + Kp,iei,

Pi+1|i = a2
i Pi|i−1 + Qi − K2

p,iRe,i. (15)

Since we assume that each sensor knows its own location, the
only other necessary location information for sensor Ni is that
of the next sensor for the prediction step (12). The informa-
tion flow between nodes along the route is illustrated in Figure
2. (For the likelihood under H0 the data fusion is a simple ac-
cumulation requiring only observation values.) Node Ni needs
to receive the log-likelihood li−1, the prediction for itself ŝi|i−1

and the error covariance Pi|i−1 from node Ni−1, and the loca-
tion information xi+1 from Ni+1.
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Figure 2: Information flow along a fusion route.

III. Performance Metric

In this section we address the problem of selecting an optimal
route and propose a link metric that captures the detection
performance for a fusion route. Since we are interested in the
detection performance, it is natural to consider as a figure of
merit the average error probability of the optimal detection for
a given route. However, the exact calculation of error prob-
ability is not available for general Gauss-Markov signals [11].
Hence, we use the Chernoff bound [10] on the error probability
as our performance criterion. The derived performance met-
ric is designed so as to minimize the Chernoff (upper) bound
on the average error probability. We show that at reasonably
high SNR the logarithm of the normalized innovation vari-
ance for each link can be used as a link metric that captures
the detection performance of a fusion route.

III.A Derivation

Consider a fusion route R(N1, · · · , Nn). Let us define the
vector of observations along the route:

yn
∆
= [y1, · · · , yn]T . (16)

Due to the Gauss-Markov assumption along the route, the
distribution of yn is given by

yn ∼

{

N (0, σ2I) under H0,
N (0,Σs + σ2I) under H1,

(17)

where I is an identity matrix and Σs is the covariance matrix
of the signal samples of the n nodes along the route. The
Chernoff bound on the average error probability of the MAP
detector (5) is given by [11]

Pe = π0P (E|H0) + π1P (E|H1) ≤ π1−s
0 πs

1e
µT,0(s), (18)

where µT,0 is the cumulant generating function of the log-
likelihood ratio T in (5) under H0, i.e.,

µT,0(s) = log E0

{

e
s log

p1(yn
1 )

p0(yn
1 )

}

, 0 ≤ s ≤ 1. (19)

The Chernoff information between p0(y
n
1 ) and p1(y

n
1 ) is de-

fined as the exponent in (18) yielding the tightest bound, i.e.,

C (p0(y
n
1 ), p1(y

n
1 ))

∆
= sup

0≤s≤1
{−µT,0(s)} (20)

Thus, the desirable properties of a performance metric in
terms of the proposed criterion are summarized as follows:

(i) The performance metric should capture the Chernoff
information provided by the route.

(ii) The overall metric is represented as a sum of the con-
tribution of each link to the performance.

The conventional procedure for the calculation of (19) in-
volves a quadratic form of the observation vector (16) and
the eigenvalues of Σs in (17). However, this approach does
not allow us to decompose the error bound into a sum of the
contribution of each link. Our approach is based on the in-
novations representation of the log-likelihood in the previous
section. Using the innovations representation (6, 10), we have

µT,0(s) = log E0

{

exp

[

s

(

−

1

2

n
∑

i=1

log Re,i −

1

2

n
∑

i=1

e2
i

Re,i

(21)

+
n

2
log σ

2
+

1

2

n
∑

i=1

y2
i

σ2

)]}

,

= s

(

−

1

2

n
∑

i=1

log Re,i +
n

2
log σ

2

)

+ (22)

log E0

{

exp

[

s

(

−

1

2

n
∑

i=1

e2
i

Re,i

+
1

2

n
∑

i=1

y2
i

σ2

)]}

,



4where the second equality results from the fact that the inno-
vation variance Re,i is deterministic. Suppose that the number
n of hops along the route is sufficiently large. Then, 1

n

∑n
i=1 y2

i

converges almost surely to its mean σ2(= E0{y
2
i }) under H0

by the strong law of large numbers (SLLN). Hence, for a route
with many hops the second term in the argument of the ex-
ponential function in (22) can be approximated by n

2
which

does not depend on the geometry of the route. Thus, for large
n the cumulant generating function is approximated by

µT,0(s) ≈ s

(

−

1

2

n
∑

i=1

log Re,i +
n

2
(log σ

2
+ 1)

)

+ log E0

{

exp

[

s

(

−

1

2

n
∑

i=1

e2
i

Re,i

)]}

. (23)

Now consider the argument of the exponential function in
(23). If the expectation were taken under H1, then {ei} would
form an independent sequence (true innovations sequence) and
the sum of e2

i normalized by Re,i would be approximated by
n
2

as well by the SLLN for a sufficiently large n. However,
the expectation here is taken under H0 where the observation
sequence {yi} is an i.i.d. sequence of sensor measurement
noises. In this case, the innovation ei is represented by an
output of a recursive linear filter, i.e., whitening filter, driven
by the i.i.d. noise sequence with variance σ2. Hence, the
variance of ei decreases to zero as the SNR increases (i.e.,
σ2 → 0). On the other hand, note that Re,i is the variance of
the true innovation, i.e., ei under H1, and from (11) we have

Re,i → Pi|i−1 (24)

as the SNR increases. As the SNR increases, the prediction
error covariance Pi|i−1 converges to a positive constant for

a transition coefficient ai strictly less than one. Thus,
e2

i

Re,i

converges to zero in mean square as the SNR increases, and
the term is negligible compared with log Re,i. Hence, at high
SNR the cumulant generating function is approximated by

µT,0(s) ≈ s

(

−

1

2

n
∑

i=1

log Re,i +
n

2
(log σ

2
+ 1)

)

. (25)

Combining (18) and (25) yields

Pe ≤ Bc ≈ π1−s
0 πs

1e
− s

2{
∑n−1

i=0 log Re,i−n(log σ2+1)}, (26)

= π1−s
0 πs

1e
− s

2

{

∑n−1
i=0

(

log
Re,i

σ2 −1

)}

, (27)

where 0 ≤ s ≤ 1. Observing (26, 27), we recognize several
facts. First, the optimization over the variable s (0 ≤ s ≤ 1)
to obtain the tightest bound is separable from the perfor-
mance dependence on the route topology at high SNR. This
is because, at high SNR, log

Re,i

σ2 > 1 (i.e., Re,i >> σ2) and
Re,i depends only on the SNR and route topology. Hence,
the route selection can be done by considering only the route
topology. In addition, the Chernoff information is attained at
s = 1 and is approximately given by

C (p0(y
n
1 ), p1(y

n
1 )) ≈

1

2

n−1
∑

i=0

(

log
Re,i

σ2
− 1

)

≈
1

2

n−1
∑

i=0

log
Re,i

σ2
.

(28)
Second, we realize what constitutes the error performance of
a route at high SNR. As seen in (26), there are positive and
negative factors to the detection performance and both are
deterministic quantities that do not depend on specific values
of observations. For every hop along the route there is a per-
formance degradation due to the measurement noise added by

the sensor node, which is given by (log σ2 +1), and this degra-
dation does not depend on the route topology. This follows
our intuition since the degrading effect is caused by the mea-
surement noise and the measurement noise at each sensor is
i.i.d. The other factor is the performance improvement at each
link which is given by the logarithm of the innovation variance
at the link, log Re,i. This improvement factor is greater than
the degradation factor since Re,i � σ2 at high SNR. Notice
that the amount of performance improvement at each hop is
not equal! It depends on how much new information (innova-
tion) about the signal field each link provides to the detector;
a link with larger Re,i provides a larger benefit. Hence, differ-
ent routes with the same number of hops can provide different
detection performances.

Expressing the bound by (27) gives a simple interpretation
of the link metric. Define the normalized innovation variance
as

re,i
∆
=

Re,i

σ2
. (29)

At high SNR the Chernoff information provided by a fusion
route is approximated by a sum of the logarithm of the nor-
malized innovation variance at each link. Since ei has Gaus-
sian distribution N (0, Re,i), the entropy of the innovation ei

at link i is given by 1
2

log(2πeRe,i). Hence, the overall metric
in (28) is also interpreted as the accumulated entropy of the
innovation process along the route.

III.B Link metric as a function of the link

length

In this section, we derive an explicit formula for the pro-
posed metric log re,i as a function of the link length.PSfrag replacements
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Figure 3: Link i.

Let us consider the innovation over link i given the previous
links. From the Kalman recursion (11, 14, 15) we have a
recursion for the MMSE prediction error:

Pi|i−1 =
σ2a2

i−1Pi−1|i−2

Pi−1|i−2 + σ2
+ Qi, (30)

where Pi|i−1 is the error variance of the MMSE prediction
for si given {y0, · · · , yi−1}. Since Pi−1|i−2 depends only on

the previous links,
Pi−1|i−2

Pi−1|i−2+σ2 =: Ki−1 (0 ≤ Ki−1 ≤ 1) is a

constant with respect to ∆i−1. Thus, the innovation variance
at link i is given by

Re,i = Pi|i−1 + σ2 = σ2a2
i−1

Pi−1|i−2

Pi−1|i−2 + σ2
+ Qi−1 + σ2,

= Π0 + σ2 − (Π0 − σ2Ki−1)e
−2A∆i−1 , (31)

where (31) is obtained by substituting ai−1 = e−A∆i−1 and
Qi−1 = Π0(1− e−2A∆i−1). Thus, the metric for link i is given
by

1

2
log re,i =

1

2
log
{

SNR + 1 − (SNR − Ki−1)e
−2A∆i−1

}

.

(32)



5Furthermore, at high SNR we have Ki−1 ≈ 1, and the pro-
posed metric is approximated by

1

2
log re,i ≈

1

2
log
{

SNR + 1 − (SNR − 1)e−2A∆i−1

}

. (33)

Figure 4 shows the link metric (33) as a function of the link
length ∆i−1. The figure shows several interesting properties
of the link metric as a function of the link length. It is seen
that the link metric increases as the link length ∆i−1 increases
but eventually converges to 1

2
log(SNR + 1). In the previous
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Figure 4: Link metric 1
2 log re,i versus ∆i (A = 1).

sections, we see qualitatively that a longer link provides a
greater contribution to the detection performance since Re,i

increases monotonically as the link length increases. It is,
however, seen that after a certain point of the link length
the performance gain due to the increase of the link length is
negligible. This reveals that a too long hop is not efficient for
the performance considering the transmission energy required
for the link since the required transmission energy increases
with a polynomial order of the link length.

IV. Discussion

In this section, we discuss applications of the results in
Section III and related issues .

First, we can find a direct application in gateway node
initiated detection based on conventional on-demand ad hoc

routings such as the dynamic source routing [13] (DSR) and
the ad hoc on-demand distance vector routing [14] (AODV),
as illustrated in Figure 1 (a). We can modify easily the ex-
isting reactive routing protocols to incorporate Algorithm 1.
Especially, the DSR is well-suited to the modification.

1

1

1,2

1,3 1,3,4

1,3,4

1,3,4,5
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Figure 5: Dynamic source routing (DSR) [13].

In the combined algorithm that we propose, the gateway
node first determines the direction of investigation and the
number of hops (i.e., the number of observation samples) that
is necessary to satisfy a certain detection performance, and

initiates the detection operation by sending a message con-
taining the decided number of hops and direction. In addi-
tion to the conventional DSR information we add the loca-
tion information of each sensor in the downward propagation.
This message propagates through the sensor network accord-
ing to the DSR algorithm, as shown in Figure 5. When a node
within the direction receives the detection initiation message
and recognizes that the hop count up to itself matches the
predetermined hop count in the message, it stops the message
propagation and initiates Algorithm 1 along the established
reverse path back to the gateway node carrying the sufficient
statistic and the sum of log re,i. In this case, the route be-
tween the gateway node to a node that satisfies the hop count
determined by the DSR algorithm is the shortest hop route
between them and is approximately a straight line in a 2-D
space. Hence, Assumption 1 is reasonable for homogenous 2-
D Gauss-Markov fields in this application. Since there may
be many nodes that satisfy the hop count within the direction
of interest, the gateway node may receive multiple responses
to the initiated routing/detection command, as illustrated in
Figure 1 (a). When the correlation structure between these
multiple response routes is unknown, it is difficult to fuse these
multiple data. One possible way is to select the best route,
and the calculated

∑

log re,i for each route can be used to
select the best route.

Gateway NodeG
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Figure 6: An example of route construction based on the
detection performance metric (a dashed line
represents that two nodes are communicable
neighbors and C0 = log re,0 = log(SNR + 1)).

Second, if we accept Assumption 1 for general curves in the
interested correlated field, the metric in (26) can be used as
a link metric for routing in the conventional sense. Consider
the case that a sensor initiates the fusion algorithm based
on a local decision and the fusion process proceeds until it
reaches the gateway node for global decision. In this case,
there may be multiple possible routes to the gateway node, as
illustrated in Figure 1 (b), and an optimal fusion route needs
to be determined to obtain the best detection performance.

For the routing purpose we utilize the fact that the accu-
mulated sum of log re,i is the same for a given route regardless
of the direction of the Kalman recursion. That is, for a given
route R(N1, · · · , Nn) the sum

∑n
i=1 log re,i is the same when

we start the recursion at N1 finishing at Nn or when we initiate
the recursion at Nn ending at N1. For the route construction
we start the Kalman recursion at the gateway node for all
paths, and can use routing methods like the Bellman-Ford al-
gorithm. For an example, let us consider the network shown
in Figure 6. Suppose that the node N1 tries to find the best
fusion route to the gateway node. Initially, all the nodes set



6the accumulated cost to the gateway node as −∞ except the
gateway node whose cost is C0 = log(SNR+1). In the first it-
eration, two neighboring nodes N3 and N4 of the gateway node
calculate the link metric by executing (11 - 15) exchanging the
necessary information described in Section A. (That is, Nj re-
quires Pj|j−1, the accumulated

∑j−1
i=1 log re,i, and the location

information xj−1 from a communicable neighbor node Nj−1.)
After the first iteration, two nodes N3 and N4 set their ac-
cumulated costs which are finite. In the second iteration, N1

and N2 update their accumulated cost to finite values bases
on paths R(G, N3, N2) and R(G, N4, N1), respectively. Now,
N1 has one route to the gateway node. In the third iteration,
N1 will get another route to the gateway node through N2,
and can select the better route.

If we use the approximated link metric (33), exchanging
the location information between neighbors is enough for the
calculation of the metric. Problems such as loop, oscillation,
etc., can be handled similarly to the cases in conventional
routing problems.

Third, when each sensor makes multiple observations about
a (time-static) phenomenon at its location. The framework
described here works without much modification. Suppose
that each sensor makes M measurements. Then, the globally
optimal statistic can be shown to be based on the observation
average of each sensor. Thus, we need only to deal with the
same system with one sample per sensor by increasing the
SNR by M times.

The overall metric
∑

log re,i implies that a route with a
larger expected innovation at each hop gives better perfor-
mance. However, to make Re,i larger for a given field correla-
tion we need a longer hop which requires a larger transmission
power. Thus, under energy constraint we face the optimiza-
tion problem of detection-based routing that we are currently
working on.

Until now, we have assumed that random fields of inter-
est have the correlation structure described in Assumption
1. Although the assumption is reasonable for almost straight
curves in a homogeneous Gauss-Markov random fields, the
assumption may be quite unrealistic for general curve shapes,
e.g., wiggles. For routes with general geometry in 2-D Gauss-
Markov random fields or other reasonable correlated fields,
cross-layer approaches combining applications such as detec-
tion and estimation directly with the network-layer routing
are a challenging open problem.

V. Conclusions

We have considered a cross-layer approach to combining
the network-layer routing with the detection at the applica-
tion layer. We have suggested a framework for the problem
and derived a link metric that captures the detection perfor-
mance. Under the assumption of the Gauss-Markov structure
along a given route and high SNR, we have shown that the
logarithm of innovation variance is a reasonable choice for a
link metric. We have also derived an explicit formula for the
proposed metric as a function of the link length. The proposed
metric can be easily applied to the conventional routing algo-
rithms. We have also proposed a location-based optimal fusion
algorithm and a detection protocol by combining the detec-
tion with on-demand routing methods. In the algorithm, the
proposed link metric can be used to select an optimal route
that provides the best detection performance.
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