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ABSTRACT

The performance of Bayesian detection of Gaussian signals using noisy observations is investigated via the error
exponent for the average error probability. Under unknown signal correlation structure or limited processing
capability it is reasonable to use the simple quadratic detector that is optimal in the case of an independent
and identically distributed (i.i.d.) signal. Using the large deviations principle, the performance of this detector
(which is suboptimal for non-i.i.d. signals) is compared with that of the optimal detector for correlated signals
via the asymptotic relative efficiency defined as the ratio between sample sizes of two detectors required for the
same performance in the large-sample-size regime. The effects of SNR on the ARE are investigated. It is shown
that the asymptotic efficiency of the simple quadratic detector relative to the optimal detector converges to one
as the SNR increases without bound for any bounded spectrum, and that the simple quadratic detector performs
as well as the optimal detector for a wide range of the correlation values at high SNR.
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1. INTRODUCTION

We consider in this paper the optimal and suboptimal detection of stationary Gaussian signals using noisy
observations yi under a Bayesian formulation. The corresponding null and alternative hypotheses are given by

H0 : yi = wi, i = 1, 2, · · · , n,
H1 : yi = wi + θsi, i = 1, 2, · · · , n,

(1)

where {wi} is independent and identically distributed (i.i.d.) N (0, σ2) noise with a known variance σ2, θ is a
nonnegative constant, and {si} is a zero-mean unit-variance stationary Gaussian signal with spectrum fs(ω),
independent of the noise {wi}. The prior probabilities for the hypotheses are denoted by

π0
∆= Pr{H0}, π1

∆= Pr{H1} = 1 − π0. (2)

Due to the stationarity of the signal, the signal-to-noise ratio (SNR) for the observations is constant and is given
by

SNR =
θ2

σ2
. (3)

Such a model arises, for example, in sensor networks (see, e.g., Sung et al.18, 19). For a large sensor network
deployed for the detection of stochastic signals such as gases or particles in a fixed area, it is reasonable to
assume that the signal is random and that spatial signal samples are correlated, while the measurement noise is
independent from sensor to sensor. Typically, the optimal detector for (1) is given in the form of a quadratic
detector that uses the correlation structure and requires the joint processing of all signal samples. In general,
optimal detection using n samples requires O(n2) multiplications and O(n) memory size for storing past samples
except in some cases where recursive techniques are available.6 These processing requirements may be prohibitive
in applications such as sensor network in which each sensor node has stringent energy and storage constraints
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and the number of nodes (or observation samples) is large. Thus, one can consider other detector structures
with reduced complexity, e.g., simple quadratic detectors or banded-quadratic detectors.7, 8

In this paper, we are interested in the asymptotic performance of these detectors and the performance
comparison between them using the asymptotic relative efficiency (ARE) derived from the large deviations
principle (LDP).4 Poor and Chang investigated the performance of these detectors using Pitman’s ARE or
asymptotic deflection ratio.3, 7, 8 While ARE from the large deviations principle is based on the law of large
numbers, Pitman’s ARE relies on convergence in distribution (of the test statistics). Thus, these two ARE’s do
not necessarily provide the same order for the performance of two detectors under consideration, and Pitman’s
ARE generally provides more accurate results than that of LDP in the low SNR regime.2 However, Pitman’s
ARE is based on the asymptotic local scenario wherein the signal power decreases to zero with a certain rate,
i.e., typically θ in (1) decreases as h√

n
for h > 0 as the number n of samples increases. Thus, it does not

allow the performance comparison for a fixed signal-to-noise ratio (SNR). Poor and Chang considered the locally
optimal detector as the reference detector under the Neyman-Pearson formulation. (The efficacy∗ of the optimal
quadratic detector is difficult to obtain since the amplitude parameter θ is inseparable in the optimal test statistic,
as shown in (14)).

The LDP for stationary Gaussian processes is well-established.12–16 Based on the result of Bryc and Dembo,13

here we extend the work of Poor and Chang7, 8 and compare the relative performance of several quadratic
detectors using the ARE from the LDP, focusing on the effects of SNR on the ARE with the optimal detector
as the reference detector under a Bayesian formulation.

The paper is organized as follows. In Section 2, some relevant results concerning the LDP are presented. In
Section 3, the quadratic detectors that we consider and the corresponding ARE are provided. In Section 4, some
numerical results are presented for several examples of signal correlation, followed by the conclusion in Section
5.

2. PRELIMINARIES

In this section, we present some definitions and results concerning LDP relevant to the further development.

Definition 2.1 (Large deviations principle
11

). Let {Pn} be a sequence of probability distributions
defined on (X ,F). {Pn} is said to satisfy the large deviation principle with a rate function I : X → [0,∞] if

• the level sets I−1([0, c]) are compact for all c < ∞,

•
lim sup

n→∞
1
n

log Pn(C) ≤ − inf
x∈C

I(x) ∀ closed C ∈ F ,

• and
lim inf
n→∞

1
n

log Pn(O) ≥ − inf
x∈O

I(x) ∀ open O ∈ F .

For the probability distributions governing a sequence of sample means the LDP is given by Crámer’s theorem,
and its extension to general sequences of random variables is provided by the Gärtner-Ellis theorem based on
the convergence of cumulant generating functions.10, 11 In particular, for the sequence of quadratic functionals
of Gaussian processes the rate function is derived by Bryc and Dembo13 circumventing difficulties in applying
the Gärtner-Ellis theorem to this problem, which is summarized in the following theorem.

Theorem 2.2 (Bryc and Dembo
13

). Let {Yi,−∞ < i < ∞} be a (real-valued) zero-mean stationary
Gaussian process with bounded spectral density function Sy(ω) defined as

Sy(ω) =
∞∑

k=−∞
E{Y0Yk}e−jkω (4)

∗Pitman’s ARE is expressed by the ratio of the efficacy of one detector to that of the other.
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with essential supremum M . Let a random variable Zn
∆= { 1

n

∑n
i=1 Y 2

i } and Pn be the distribution of Zn, i.e.,

Pn(S) ∆= Pr{Zn ∈ S} for S ∈ B(R). Then, {Pn} satisfies the LDP with a rate function

I(z) = sup
−∞<t< 1

2M

[zt − Λ(t)], (5)

where

Λ(t) = − 1
4π

∫ 2π

0

log(1 − 2tSy(ω))dω (6)

Lemma 2.3 (Bryc and Dembo
13

). Suppose Y = [Y1, · · · , Yn]T is a real-valued zero-mean Gaussian vector
with the covariance matrix Σ and let W be a symmetric real-valued n × n matrix. Then, with λ1, · · · , λn the
eigenvalues of the matrix WΣ we have

log EesYT WY = −1
2

n∑

i=1

log(1 − 2sλi)

for all s ∈ C s.t. maxi{Re(s)λi} < 1/2. Furthermore, log EetYT WY = ∞ for all t ∈ R s.t. maxi{tλi} ≥ 1/2.

Another useful result concerns the asymptotic distribution of the eigenvalues of a Toeplitz matrix, which is
summarized in the following theorem.

Theorem 2.4 (Grenander and Szegö
9
). Let Sy(ω) be the spectrum of {Yi}, defined as (4), with finite

lower and upper bounds denoted by m and M , respectively. Let Σy,n be a covariance matrix defined as

Σy,n = [E{YiYj}]ni,j=1 (7)

and λ
(n)
1 , · · · , λ

(n)
n be the eigenvalues of Σy,n. Then, for any continuous function h : [m,M ] → R, we have

lim
n→∞

1
n

n∑

i=1

h(λ(n)
i ) =

1
2π

∫ 2π

0

h(Sy(ω))dω. (8)

3. ASYMPTOTIC RELATIVE EFFICIENCY

In this section, we present the classes of detectors that we consider and their corresponding rate functions. By
stacking the observations and corresponding signals and noises, the hypotheses (1) can be rewritten in vector
form as

H0 : yn = wn,
H1 : yn = wn + θsn,

(9)

where
yn

∆= [y0, · · · , yn]T , sn
∆= [s0, · · · , sn]T , wn

∆= [w0, · · · , wn]T ,

and the noise vector wn ∼ N (0, σ2I), sn ∼ N (0,Σs,n), and yn has distribution N (0,Σj,n) for hypothesis j
(j = 0, 1) where

Σ0,n = σ2I, Σ1.n = σ2I + θ2Σs,n. (10)

For convenience, we further assume equal prior probabilities, i.e.,

π0 = π1 =
1
2
. (11)
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Then, the optimal detector for (9) is given by the maximum a posteriori probability detector:

δo(yn) =
{

1, 1
n log Ln(yn) ≥ τ = 0,

0, otherwise, (12)

where

Ln(yn) =
( |Σ0,n|
|Σ1,n|

)1/2

e
1
2yT

n Qnyn , (13)

and
Qn = Σ−1

0,n − Σ−1
1,n = σ−2I − (σ2I + θ2Σs,n)−1. (14)

Since the calculation of the likelihood ratio requires the product of all observations, the optimal detector
typically requires O(n2) multiplications and O(n) memory for the storage of the previous samples.7 Next, we
consider a simple quadratic detector obtained by neglecting the signal correlation, i.e., Σs,n ≡ I, and it is given
by

δsq(yn) =

⎧
⎨

⎩
1, 1

n log
[(

σ2n

(σ2+θ2)n

)1/2

e
1
2yT

n Q̂nyn

]
≥ 0,

0, otherwise,
(15)

where

Q̂n =
θ2

σ2(σ2 + θ2)
I. (16)

The test statistic in this case can be rewritten as

Tsq,n =
1
2

log
σ2

σ2 + θ2
+

θ2

2nσ2(σ2 + θ2)

n∑

i=1

y2
i . (17)

Thus, the simple quadratic detector requires O(n) multiplications and one storage for accumulation.

We also consider a banded-quadratic detector structure which has intermediate complexity between the opti-
mal and the simple quadratic detector, similar to that considered by Poor and Chang.7, 8 Since the determinants
of the two matrices Σ0,n and Σ1,n can be computed off line for the optimal detector (12, 13) when the signal
correlation structure is known beforehand, the main complexity results from the calculation of the quadratic
term based on observations. Thus, a class of detectors with intermediate complexity is given by

δb,m(yn) =
{

1, 1
n log L

(b,m)
n (yn) ≥ 0,

0, otherwise,
(18)

where

L(b,m)
n (yn) =

( |Σ0,n|
|Σ1,n|

)1/2

e
1
2yT

n Q̃(m)
n yn , (19)

and Q̃(m)
n is a banded n × n symmetric positive-definite Toeplitz matrix with bandwidth (2m + 1), i.e.,

Q̃(m)
n =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 · · · bm 0 · · · · · ·
b1 b0 b1

. . . bm 0 · · ·
... b1 b0 b1

. . . bm 0

bm
. . . . . . . . . . . . . . . bm

0 bm
. . . b1 b0 b1

...
... 0 bm

. . . b1 b0 b1

...
... 0 bm · · · b1 b0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)
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Here, the values of bl, l = 0, 1, · · · ,m (b−l = bl) need to be properly determined for optimal performance. Let
the discrete-time Fourier transform of the finite sequence {b−m, b−m+1, · · · , b−1, b0, b1, · · · , bm} be gm(ω), i.e.,

gm(ω) = b0 + 2
m∑

l=1

bl cos(lω), 0 ≤ ω ≤ 2π. (21)

Then, the eigenvalues of Q̃(m)
n converge to uniform samples, {gm( 2πk

n )}k=0,1,··· ,n−1, of gm(ω) as n increases since
Q̃(m)

n is Toeplitz.9

3.1. Error Exponent and ARE

The false alarm probability, α
(δ)
n , and the miss probability, β

(δ)
n , for a particular detector δ are defined as

α(δ)
n

∆= Pr{δ(yn) = 1|H0}, (22)

β(δ)
n

∆= Pr{δ(yn) = 0|H1}. (23)

In general, these probabilities decay exponentially as n increases without bound, and the decay rate is given by
Theorem 2.2. Thus, we have

E0(δ)
∆= − lim

n→∞
1
n

log α(δ)
n = inf

z∈[0,∞)
I
(δ)
0 (z), (24)

E1(δ)
∆= − lim

n→∞
1
n

log β(δ)
n = inf

z∈(−∞,0)
I
(δ)
1 (z), (25)

where Ij(δ)(z), j = 0, 1, is defined as (5) with limiting cumulant moment generating function Λ(δ)
j (t) correspond-

ing to the considered detector and hypothesis. The error exponent or the exponential decay rate of the average
error probability for the detector δ is given by

E(δ) ∆= lim
n→∞− 1

n
log P (δ)

e,n = lim
n→∞− 1

n
log(π0α

(δ)
n + π1β

(δ)
n ),

= min{E0(δ), E1(δ)}. (26)

Hence, we have asymptotically
P (δ)

e,n ∼ e−nE(δ). (27)

Eq. (27) provides an asymptotic criterion for the comparison of two detectors.4 The efficiency of {δ1} relative
to {δ2} for sample size n is defined to the ratio n2/n, where n2 is the smallest number of samples such that
P

(δ2)
e,n2 ≤ P

(δ1)
e,n .1 Thus, the asymptotic efficiency of a detector δ1 relative to another detector δ2 from the LDP is

defined as the ratio between the two error exponents:

AREδ1,δ2

∆=
E(δ1)
E(δ2)

. (28)

Now let us consider the rate function for each detector under consideration. For the simple quadratic detector
δsq(yn) the calculation of the rate function under each hypothesis is straightforward from Theorem 2.2. Applying
Theorem 2.2 to (17), we have

Λ(δsq)
0 (t) =

t

2
log

σ2

σ2 + θ2
− 1

2
log
(

1 − t
θ2

σ2 + θ2

)
, (29)

Λ(δsq)
1 (t) =

t

2
log

σ2

σ2 + θ2
− 1

4π

∫ 2π

0

log
(

1 − t
θ2(σ2 + θ2fs(ω))

σ2(σ2 + θ2)

)
dω, (30)

where fs(ω) is the spectrum of the signal and the range of t is defined for each case so that the term in the
logarithmic function is strictly positive.
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For the optimal detector δo(·) the test statistic is given by

To,n =
1
n

log

[( |Σ0,n|
|Σ1,n|

)1/2

e
1
2yT

n Qnyn

]
. (31)

In this case the rate function is obtained by a whitening transform. Let the eigendecomposition of the signal
covariance matrix Σs,n be

Σs,n = UΛUT = Udiag(λ(n)
1 , · · · , λ(n)

n )UT , (32)

where U is an orthogonal matrix. Then, the eigendecomposition of Qn is given by

Qn = USUT , (33)

= Udiag

(
θ2λ

(n)
1

σ2(σ2 + θ2λ
(n)
1 )

, · · · ,
θ2λ

(n)
n

σ2(σ2 + θ2λ
(n)
n )

)
UT ,

and

yT
nQnyn = ||ȳn||2 =

n∑

i=1

ȳ2
i , (34)

where ȳn = S1/2UT yn and ȳi is the ith element of ȳn. Thus, the test statistic is given by

To,n =
1
2n

n∑

i=1

log
σ2

σ2 + θ2λ
(n)
i

+
1
2n

n∑

i=1

ȳ2
i .

By Theorems 2.2 and 2.4, we have

Λ(δo)
0 (t) =

t

4π

∫ 2π

0

log
σ2

σ2 + θ2fs(ω)
dω − 1

4π

∫ 2π

0

log
(

1 − t
θ2fs(ω)

σ2 + θ2fs(ω)

)
dω, (35)

Λ(δo)
1 (t) =

t

4π

∫ 2π

0

log
σ2

σ2 + θ2fs(ω)
dω − 1

4π

∫ 2π

0

log
(

1 − t
θ2fs(ω)

σ2

)
dω. (36)

The range of t is again defined for each case so that the term in the logarithmic function is positive. For
the optimal case the rate function for the quadratic part has also been derived by several other authors, e.g.,
Chamberland.17

For the banded quadratic detector the test statistic is given by

T
(m)
b,n =

1
n

log

[( |Σ0,n|
|Σ1,n|

)1/2

e
1
2yT

n Q̃(m)
n yn

]
=

1
2n

n∑

i=1

log
σ2

σ2 + θ2λ
(n)
i

+
1
2n

yT
n Q̃(m)

n yn, (37)

where Q̃(m)
n is defined in (20). By Lemma 2.3, the cumulant generating function for the quadratic part under

the hypothesis j is given by

log Ej{et 1
2yT

n Q̃(m)
n yn} = −1

2

n∑

i=1

log
(
1 − tλ̃

(n)
ij

)
, j = 0, 1, (38)

for all t < 1/(maxi λ̃
(n)
ij ), where {λ̃(n)

ij , i = 1, · · · , n} are the eigenvalues of Q̃(m)
n Σj,n, and Σj,n (j = 0, 1) is

defined in (10). Because of the Toeplitz structure of Q̃(m)
n and Σj,n, it follows that9

lim
n→∞

1
n

n∑

i=1

h(λ̃(n)
ij ) =

1
2π

∫ 2π

0

h(gm(ω)fj(ω))dω (39)
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for any continuous function h(·), where fj(ω) is the spectrum of the observation process {yi} under the hypothesis
j (j = 0, 1). Thus, the rate function for the banded-quadratic detector is given by

Λ(δb,m)
0 (t) =

t

4π

∫ 2π

0

log
σ2

σ2 + θ2fs(ω)
dω − 1

4π

∫ 2π

0

log
(
1 − tσ2gm(ω)

)
dω, (40)

Λ(δb,m)
1 (t) =

t

4π

∫ 2π

0

log
σ2

σ2 + θ2fs(ω)
dω − 1

4π

∫ 2π

0

log
(
1 − t(σ2 + θ2fs(ω))gm(ω)

)
dω, (41)

where gm(ω) is defined in (21) and the range of t is defined properly in each case.

4. EXAMPLES AND NUMERICAL RESULTS

We now consider some signal examples and investigate the relative performance of the detectors in the previous
section as a function of various parameters such as correlation strength and SNR via the asymptotic relative
efficiency defined in (28). In particular, we consider Gauss-Markov signals and triangularly correlated signals.
Except for some simple cases such as autoregressive signals without additive noise14 it is difficult to obtain
closed-form expressions for the rate functions in the previous section. Thus, we evaluate the rate and ARE by
numerical evaluation of the error exponent.

4.1. Gauss-Markov Signal

We first consider the stationary Gauss-Markov signal for which the correlation is given by

E{S0Sk} = a|k|, k = 0,±1,±2, · · · , (0 ≤ a < 1), (42)

and the spectrum is given by the Poisson kernel:

fs(ω) =
1 − a2

1 − 2a cos ω + a2
. (43)

Fig. 1 (a) shows the error exponent for the false alarm and miss probabilities for the optimal and simple
quadratic detectors as a function of the correlation strength a at 10 dB SNR. It is seen that the error exponent
E0(δsq) for the false alarm probability of the simple quadratic detector is independent of the correlation strength
and is equal to the maximum value of the error exponent of the optimal detector achieved by independent
signal†(a = 0). This is easily seen by the logarithmic generating function (29) which does not depend on the
signal spectrum. However, the error exponent E1(δsq) for the miss probability is less than that of the false alarm
probability for all values of a, and decreases to zero as the signal correlation becomes strong (a → 1). Thus,
the error exponent for the average error probability is determined by that of the miss probability for the simple
quadratic detector. On the other hand, the error exponents for the false alarm and miss probabilities are the
same, i.e., E0(δo) = E1(δo), for the optimal detector with equal prior probabilities, i.e., zero threshold in (12).
In this case, the minimum in (26) is attained and the error exponent is the Chernoff information between the
two distributions under the hypotheses (9). Note that the error exponent for the miss probability of the simple
quadratic detector is smaller than that of the optimal detector for 0 < a < 1. So, the error exponent of the simple
quadratic detector is smaller than that of the optimal detector even if the simple quadratic detector performs
better than the optimal detector for the false alarm probability. From the detector structure (17) one can see
that the simple quadratic detector is optimized for the detection of the false alarm event regardless of the signal
correlation, thereby sacrificing the performance for correct detection, while the optimal detector optimizes the
test statistic so that it can perform equally well for both of the false alarm and miss events.

Fig. 1 (b) shows the ARE of the simple quadratic detector to the optimal detector as a function of correlation
strength a for several values of SNR (0, 10, 20, 30 dB). It is seen that at weak correlation the simple quadratic
detector performs as well as the optimal detector for all the values of SNR. It is also seen that the ARE decreases

†This is not the case when the SNR is low. At low SNR the maximum value of the error exponent for the optimal
detection is achieved at some correlation value 0 < a < 1.20

Proc. of SPIE Vol. 5910  591002-7



0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a

E
rr

or
 e

xp
on

en
t

E
0
(δ

sq
)

E
1
(δ

sq
)

E
0
(δ

o
)=E

1
(δ

o
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

A
R

E

SNR= 0dB
SNR=10dB
SNR=20dB
SNR=30dB

(a) (b)
Figure 1. Optimal and simple quadratic detectors (Gauss-Markov signal): (a) error exponent, Ej(δ), j = 0, 1, as a
function of correlation strength a (SNR=10dB) and (b) ARE as a function of correlation strength a for SNR = 0, 10, 20,
30 dB.

to zero eventually as the correlation becomes strong (a → 1). This is because for the perfectly correlated signal
(a = 1) the optimal test statistic is in form of (

∑n
i=1 yi)2 which uses the perfect signal correlation and adds the

signal component coherently before taking the magnitude by squaring.20 On the other hand, the test statistic
(17) for the simple quadratic detector neglects this correlation entirely. It is seen that the range of correlation
values over which the simple quadratic detector performs as well as the optimal detector increases as SNR
increases. Note that at an SNR of 30 dB the simple quadratic detector performs as well as the optimal detector
through almost the whole range of correlation except the very highly correlated case (0.9 < a ≤ 1). The behavior
of ARE as a function of SNR is summarized in the following proposition.

Proposition 4.1. The ARE of the simple quadratic detector (15) to the optimal detector (12) increases to unity
for any bounded spectrum fs(ω) as SNR increases without bound.

Proof: Since the error exponent for the simple quadratic detector is determined by the miss probability and the
optimal detector has the same error exponent for the false alarm and miss probabilities, this can be shown via
the cumulant generating functions (30, 36) for the two detectors. For any bounded spectrum we have

fs(ω) ≤ M, ∀ 0 ≤ ω ≤ 2π, (44)

for some M > 0. So, we have for the second term in (30), as θ2 → ∞,

θ2(σ2 + θ2fs(ω))
σ2(σ2 + θ2)

→ θ2fs(ω)
σ2

, (45)

which is the corresponding term in (36). For the first terms in (30) and (36) we have

log
σ2

σ2 + θ2
→ log

σ2

θ2
(46)

∫ 2π

0

log
σ2

σ2 + θ2fs(ω)
dω →

∫ 2π

0

log
σ2

θ2fs(ω)
dω = log

σ2

θ2
, (47)

since
∫ 2π

0
log fs(ω)dω = 0 because of the para-Hermitian conjugacy of the spectral factorization of fs(ω) =

L(z)L∗( 1
z∗ )|z=ejω . Thus, the two rate functions for the simple quadratic and the optimal detectors converge as

θ2 → ∞. �
For the spectrum (43) we have bounded spectrum for any fixed value of a (0 ≤ a < 1), which explains the

behavior of the ARE in Fig. 1 (b) as SNR increases.
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4.2. Triangularly Correlated Signal

Next we consider the stationary signal with triangular correlation, i.e.,

E{S0Sk} =
{

1 − |k|/M, |k| < M
0, |k| ≥ M

(48)

where M > 0 is the correlation length of the signal. The spectrum of the signal is given by the Mth Fejék
kernel7:

fs(ω) =
1
M

(
sin(Mω/2)
sin(ω/2)

)2

, 0 ≤ ω ≤ 2π. (49)

Fig. 2 (a) shows the error exponent for the false alarm and miss probabilities for the optimal and simple
quadratic detectors as a function of the correlation width M at 10 dB SNR for the triangularly correlated signal.
Similar relative behavior to that in the Gauss-Markov signal case is observed. It is worth noticing that the error
exponents for the two detectors decay sharply near M = 1 as the correlation length M increases, and the decay
is mild as M further increases.
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Figure 2. Optimal and simple quadratic detectors (triangularly correlated signal): (a) error exponent, Ej(δ), j = 0, 1,
as a function of correlation strength a (SNR=10dB) and (b) ARE as a function of correlation strength a for SNR = 0,
10, 20, 30 dB.

Fig. 2 (b) shows the ARE of the simple quadratic detector to the optimal detector as a function of correlation
strength a for the same values of SNR as in the Gauss-Markov case. It is seen that the ARE increases as SNR
increases as expected from Proposition 4.1. However, at an SNR of 30 dB there exists noticeable performance
degradation for the simple quadratic detector compared with Fig. 1 (b) for a wide range of the correlation length
M .

4.3. Banded Quadratic Detector

We here provide some necessary conditions for the optimal Q̃(m)
n in (19) and evaluate the performance of the

banded quadratic detector. The test statistic (37) has two different limits (as n → ∞) under the two hypotheses,
and they are given by

T̄
(m)
0

∆= lim
n→∞{T (m)

b,n |H0} =
1
4π

∫ 2π

0

log
σ2

σ2 + θ2fs(ω)
dω +

1
4π

∫ 2π

0

σ2gm(ω)dω, (50)

T̄
(m)
1

∆= lim
n→∞{T (m)

b,n |H1} =
1
4π

∫ 2π

0

log
σ2

σ2 + θ2fs(ω)
dω +

1
4π

∫ 2π

0

(σ2 + θ2fs(ω))gm(ω)dω. (51)

The first term in each equation is by applying Theorem 2.4, and the second term follows from the law of large
numbers and 1

nEj{yT
n Q̃(m)

n yn} = 1
n tr{Q̃(m)

n Σj,n} = 1
n

∑n
i=1 λ̃

(n)
ij (to which (39) is applied) since the trace of a
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matrix is the sum of its eigenvalues. From (50, 51) we have T̄
(m)
0 < T̄

(m)
1 for any θ > 0 and a signal spectrum

which is not identically zero. One necessary condition for the optimal gm(ω) is given by

T̄
(m)
0 < τ (= 0) < T̄

(m)
1 . (52)

Otherwise, the error exponent E(δb,m) is zero and the average error probability of the banded-quadratic detector
decays at subexponential rate as n increases. For example, if T̄

(m)
0 > 0, then E0(δb,m) = infz∈[0,∞) I

δb,m

0 (z) = 0
since I

δb,m

0 (T̄ (m)
0 ) = 0. Similarly, we have E1(δb,m) = infz∈(−∞,0) I

δb,m

1 (z) = 0 if T̄
(m)
1 < 0. Thus, in the case of

m = 0 we have gm(ω) = b0 and it is seen from (51) that the optimal b0 is positive (otherwise, T̄
(0)
1 < 0), which is

consistent with our assumption of the positive-definiteness of Q̃(m)
n . In general, it is easy to see that well chosen

b0, · · · , bm satisfy the condition (52) since the first terms in (50, 51) are equivalent and negative. When (52) is
satisfied, it is known that the infimum for the rate function is achieved at the decision threshold,11 i.e.,

E0(δb,m) = inf
z∈[0,∞)

I
δb,m

0 (z) = I
δb,m

0 (0) = sup
−∞<t<inf0≤ω≤2π

�
1

σ2gm(ω)

�{−Λδb,m

0 (t)}, (53)

E1(δb,m) = inf
z∈(−∞,0)

I
δb,m

1 (z) = I
δb,m

1 (0) = sup
−∞<t<inf0≤ω≤2π

�
1

(σ2+θ2fs(ω))gm(ω)

�{−Λδb,m

1 (t)}, (54)

where Λδb,m

0 (t) and Λδb,m

1 (t) are given by (40) and (41), respectively, and the optimal values of t for (53) and
(54) are given by solving

1
4π

∫ 2π

0

log
σ2

σ2 + θ2fs(ω)
dω +

1
4π

∫ 2π

0

σ2gm(ω)
1 − t∗0σ2gm(ω)

dω = 0 (55)

and
1
4π

∫ 2π

0

log
σ2

σ2 + θ2fs(ω)
dω +

1
4π

∫ 2π

0

(σ2 + θ2fs(ω))gm(ω)
1 − t∗1(σ2 + θ2fs(ω))gm(ω)

dω = 0, (56)

respectively. Thus, the optimal gm(ω) for given m, SNR and signal spectrum is obtained from the following
optimization problem:

g∗m(ω) = arg max
b0,··· ,bm

{
min{Iδb,m

0 (0), Iδb,m

1 (0)}
}

(57)

under the constraint (52). A closed-form expression for (57) seems difficult to obtain in general cases. How-
ever, (52-56) facilitate numerical approaches to the optimization problem, and a procedure using grid search is
summarized in Fig. 3.

We considered the Gauss-Markov signal (43) and evaluated the banded-quadratic detector with m = 1 which
corresponds to the case that each sensor requires the information only from a neighboring sensor in a wireless
sensor network setup. Fig. 4 (a) shows the error exponents E0(δb,1) and E1(δb,1) of the banded-quadratic
detector optimized using the algorithm shown in Fig. 3 for each value of a at 10 dB SNR. Fig. 4 (b) shows
the corresponding ARE of the banded-quadratic detector to the optimal detector. Surprisingly, it is seen that
optimal performance is almost achieved with only m = 1 for a SNR of 10 dB.

5. CONCLUSIONS
We have considered the relative performance of several quadratic detectors for Gaussian signals in Gaussian noise
under a Bayesian formulation. Using the large deviations principle, a general form of the rate function for the
simple quadratic detector, optimal detector, and banded-quadratic detector has been provided using the signal
spectrum. For the examples of Gauss-Markov and triangularly correlated signals we have evaluated the error
exponents for the false alarm and miss probabilities and the ARE for the average error probability. We have also
investigated the effects of SNR on the relative performance. The asymptotic efficiency of the simple quadratic
detector relative to the optimal detector converges to unity as SNR increases without bound for any bounded
signal spectrum. At high SNR the simple quadratic detector performs as well as the optimal detector for a wide
range of correlation values and the banded-quadratic detector effectively achieves the optimal performance with
much lower complexity.
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Figure 3. An optimization algorithm (grid search).
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Figure 4. Banded-quadratic detector (Gauss-Markov signal): (a) error exponent, Ej(δ), j = 0, 1, as a function of
correlation strength a for SNR = 10 dB and (b) ARE as a function of correlation strength a with the optimized gm(ω)
for SNR = 10 dB.
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