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Neyman–Pearson Detection of Gauss–Markov
Signals in Noise: Closed-Form Error Exponent

and Properties
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Abstract—The performance of Neyman–Pearson detection of
correlated random signals using noisy observations is consid-
ered. Using the large deviations principle, the performance is
analyzed via the error exponent for the miss probability with a
fixed false-alarm probability. Using the state-space structure of
the signal and observation model, a closed-form expression for
the error exponent is derived using the innovations approach, and
the connection between the asymptotic behavior of the optimal
detector and that of the Kalman filter is established. The proper-
ties of the error exponent are investigated for the scalar case. It
is shown that the error exponent has distinct characteristics with
respect to correlation strength: for signal-to-noise ratio (SNR)

1, the error exponent is monotonically decreasing as the corre-
lation becomes strong whereas for SNR 1 there is an optimal
correlation that maximizes the error exponent for a given SNR.

Index Terms—Autoregressive process, correlated signal, error
exponent, Gauss–Markov model, Neyman–Pearson detection.

I. INTRODUCTION

I N this paper, we consider the detection of correlated random
signals using noisy observations under the Neyman–

Pearson formulation. The null and alternative hypotheses are
given by

(1)

where is independent and identically distributed (i.i.d.)
noise with a known variance , and is the sto-

chastic signal process correlated in time. We assume that
is a Gauss–Markov process following a state-space model. An
example of an application in which this type of problem arises
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is the detection of stochastic signals in large sensor networks,
where it is reasonable to assume that signal samples taken at
closely spaced locations are correlated, while the measurement
noise is independent from sensor to sensor. In this paper, we are
interested in the performance of the Neyman–Pearson detector
for the hypotheses (1) with a fixed level (i.e., upper-bound con-
straint on the false-alarm probability) when the sample size is
large.

In many cases, the miss probability of the Neyman–
Pearson detector with a fixed level decays exponentially as the
sample size increases, and the error exponent is defined as the
rate of exponential decay, i.e.,

(2)

under the given false-alarm constraint. The error exponent is an
important parameter since it gives an estimate of the number of
samples required for a given detector performance; faster decay
rate implies that fewer samples are needed for a given miss prob-
ability, or that better performance can be obtained with a given
number of samples. Hence, the error exponent is a good perfor-
mance index for detectors in the large sample regime. For the case
of i.i.d. samples, where each sample is drawn independently from
the common null probability density or alternative density ,
the error exponent under the fixed false-alarm constraint is given
by the Kullback–Leibler information between the two
densities and (see [29]). For more general cases, the error
exponent is given by the asymptotic Kullback–Leibler rate de-
fined as the almost-sure limit of

as (3)

under , where and are the null and alternative
joint densities of , respectively, assuming that the
limit exists [30]–[34].1 However, the closed-form calculation
of (3) is available only for restricted cases. One such example
is the discrimination between two autoregressive (AR) signals
with distinct parameters under the two hypotheses [34], [35]. In
this case, the joint density is easily decomposed using the
Markov property under each hypothesis, and the calculation of
the rate is straightforward. However, for the problem of (1) this
approach is not available since the observation samples under
the alternative hypothesis do not possess the Markov property
due to the additive noise, even if the signal itself is Markovian;
i.e., the alternative is a hidden Markov model.

1Ergodic cases are examples for which this limit exists.
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A. Summary of Results

Our approach to this problem is to exploit the state-space
model. The state-space approach in detection is well established
in calculation of the log-likelihood ratio (LLR) for correlated
signals [6], [7]. With the state-space model, the LLR is ex-
pressed through the innovations representation [11] and the in-
novations are easily obtained by the Kalman filter. The key idea
for the closed-form calculation of the error exponent for the
hidden Markov model is based on the properties of innovations.
Since the innovations process is independent from time to time,
the joint density under is given by the product of marginal
densities of the innovations, and the LLR is given by a function
of the sum of squares of the innovations; this functional form
facilitates the closed-form calculation of (3).

By applying this state-space approach, we derive a closed-
form expression for the error exponent for the miss prob-
ability of the Neyman–Pearson detector for (1) of fixed false-
alarm probability .

We next investigate the properties of the error exponent using
the obtained closed-form expression. We explore the asymptotic
relationship between the innovations approach and the spec-
trum of the observation. We show that the error exponent is a
function of the signal-to-noise ratio (SNR) and the correlation,
and has different behavior with respect to (w.r.t.) the correlation
strength depending on the SNR. We show a sharp phase transi-
tion at SNR : at high SNR, is monotonically decreasing
as a function of the correlation, while at low SNR, on the other
hand, there exists an optimal correlation value that yields the
maximal .

We also make a connection between the asymptotic behavior
of the Kalman filter and that of the Neyman–Pearson detector. It
is shown that the error exponent is determined by the asymptotic
(or steady-state) variances of the innovations under and
together with the noise variance.

B. Related Work

The detection of Gauss–Markov processes in Gaussian noise
is a classical problem. See [5] and references therein. Our work
focuses on the performance analysis as measured by the error
exponent, and relies on the connection between the likelihood
ratio and the innovations process as described by Schweppe
[6]. In addition to the calculation of the LLR, the state-space
approach has also been used in the performance analysis in this
detection problem. Exploiting the state-space model, Schweppe
obtained a differential equation for the Bhattacharyya distance
between two Gaussian processes [8]–[10], which gives an
upper bound on the average error probability under a Bayesian
formulation.

There is an extensive literature on the large deviations
approach to the analysis of the detection of Gauss–Markov
processes [19]–[28]. Many of these results rely on the extension
of Cramer’s theorem by Gärtner and Ellis [15]–[18] and the
properties of the asymptotic eigenvalue distributions of Toeplitz
matrices [12], [13]. To find the rate function, however, this
approach usually requires an optimization that requires non-
trivial numerical methods except in some simple cases, and the
rate is given as an integral of the spectrum of the observation

process; closed-form expressions are difficult to obtain except
for the case of a noiseless AR process in discrete time and its
continuous-time counterpart, the Ornstein–Uhlenbeck process
[19]–[27]. In addition, most results have been obtained for a
fixed threshold for the normalized LLR test, which results in ex-
pressions for the rate as a function of the threshold. For ergodic
cases, however, the normalized LLR converges to a constant
under the null hypothesis and the false-alarm probability also
decays exponentially for a fixed threshold. Hence, a detector
with a fixed threshold is not optimal in the Neyman–Pearson
sense since it does not use the false-alarm constraint fully; i.e.,
the optimal threshold is a function of sample size.

C. Notation and Organization

We will make use of standard notational conventions. Vec-
tors and matrices are written in boldface with matrices in cap-
itals. All vectors are column vectors. For a scalar , de-
notes the complex conjugate. For a matrix , and indi-
cate the transpose and Hermitian transpose, respectively.
and denote the determinant and trace of , respectively.

denotes the element of the th row and th column, and
denotes the set of all eigenvalues of . We reserve

for the identity matrix of size (the subscript is included only
when necessary). For a sequence of random vectors ,
is the expectation of under probability density .
The notation means that has the multivariate
Gaussian distribution with mean and covariance .

The paper is organized as follows. The data model is de-
scribed in Section II. In Section III, the closed-form error ex-
ponent is obtained via the innovations approach representation.
The properties of the error exponent are investigated in Sec-
tion IV, and the extension to the vector case is provided in Sec-
tion V. Simulation results are presented to demonstrate the pre-
dicted behavior in Section VI, followed by the conclusion in
Section VII.

II. DATA MODEL

For the purposes of exposition, we will focus primarily on the
case in which the signal is generated by a scalar time-invariant
state-space model. The more general vector case will be consid-
ered below. In particular, we assume that the signal process
has a time-invariant state-space structure

(4)

where and are known scalars with and .
We assume that the process noise is independent of the
measurement noise and the initial state is independent
of for all . Notice that the signal sequence forms a sta-
tionary process for this choice of . Due to this stationarity, the
signal variance is for all , and the SNR for the observa-
tions is thus given by

(5)
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Notice that the value of determines the amount of correlation
between signal samples. For an i.i.d. signal we have and
all the signal power results from the process noise . When
the signal is perfectly correlated on the other hand, and
the signal depends only on the realization of the initial state .
The autocovariance function of the signal process is
given by

(6)

As seen in (1), the observation under the alternative hy-
pothesis is given by a sum of signal sample and independent
noise . Thus, the observation sequence under is not
a Markov process due to the presence of the additive noise even
if the signal is Markovian. Let denote the autocovariance
function of the observation process under , i.e.,

(7)

and let be the spectrum of the observation process under
, i.e.,

(8)

Then, the spectra of the observation process under and
are given by

(9)
where the signal spectrum under the state-space model is given
by the Poisson kernel

(10)

III. ERROR EXPONENT FOR GAUSS–MARKOV SIGNAL IN NOISE

In this section, we derive the error exponent of the Neyman–
Pearson detector with a fixed level for the Gauss–
Markov signal described by (4) embedded in noisy observations.

A general approach to the error exponent of Neyman–Pearson
detection of Gaussian signals can be framed in the spectral do-
main. It is well known that the Kullback–Leibler information
between two zero-mean Gaussian distributions
and is given by

(11)

As noted earlier, this quantity gives the error exponent in the
case of an i.i.d. Gaussian signal. In more general cases with
correlated Gaussian signals, the error exponent can similarly be
obtained using the asymptotic properties of covariance matrices.
Let be the random vector of observation samples defined
as

(12)

For two distributions

and

the error exponent is given by the almost-sure limit of the Kull-
back–Leibler rate

(13)

under [30]–[34]. Using the asymptotic distribution of the
eigenvalues of a Toeplitz matrix [12], [13], we have

(14)
where is the spectrum of which is assumed to have
finite lower and upper bounds under distribution . The
limiting behavior of is also known and is given
by (assuming that the true distribution of is )

(15)

(16)

where the limit is in the almost-sure sense convergence under
, provided that and are continuous and

strictly positive. (See [14, Lemmas 1 and 2] and [4, Propositions
10.8.2 and 10.8.3].) Combining (13)–(16), the error exponent
for two zero-mean stationary Gaussian processes is thus given
by

(17)

(18)

(19)

Intuitively, the error exponent (19) can be explained from (11)
using the frequency binning argument used to obtain the channel
capacity of Gaussian channel with colored noise from that of
independent parallel Gaussian channels [3].

The spectral form (19) of the error exponent is valid for a wide
class of stationary Gaussian processes including the autoregres-
sive moving average (ARMA) processes and the hidden Markov
model (1)–(4). For the detection (1) under the scalar state-space
model (4), we have

(20)

where , and two
spectra under and are given by (9). However, it is
not straightforward to obtain a closed-form expression for
(19) except in some special cases, e.g., when both of the



SUNG et al.: NEYMAN–PEARSON DETECTION OF GAUSS–MARKOV SIGNALS IN NOISE 1357

two distributions of under and have the Markov
property [35].

In the remainder of the paper, we focus on the derivation of a
closed-form expression for the error exponent of the miss
probability for (1)–(4) by exploiting the state-space structure
under the alternative hypothesis. We do so by making a con-
nection with Kalman filtering [11]. Our expressions will allow
us to investigate the properties of the error exponent.

A. Closed-Form Error Exponent via Innovations Approach

Theorem 1 (Error Exponent): For the Neyman–Pearson de-
tector for the hypotheses (1) with level (i.e., )
and , the error exponent of the miss probability is
given by

(21)

independently of the value of , where and are the
steady-state variances of the innovations process of calcu-
lated under and , respectively. Specifically, and
are given by

(22)

and

(23)

where

(24)

Here, is the steady-state error variance of the minimum mean-
square error (MMSE) estimator for the signal under the model

. Note that the error exponent (21) is thus a closed form of
(19) for the state-space model.

Proof: See the Appendix .

Theorem 1 follows from the fact that the almost-sure limit (3)
of the normalized log-likelihood ratio under is the error ex-
ponent for general ergodic cases [31]–[34]. To make the closed-
form calculation of the error exponent tractable for the hidden
Markov structure of , we express the LLR through the in-
novations representation [6]; the LLR is given by a function of
the sum of squares of the innovations on which the strong law
of large numbers (SLLN) is applied. The calculated innovations
are true in the sense that they form an independent sequence
only under , i.e., when the signal actually comes from the
state-space model. It is worth noting that is the steady-state
variance of the “innovations” calculated as if the observations
resulted from the alternative, but are actually from the null hy-
pothesis. In this case, the “innovation” sequence becomes the
output of a recursive (whitening) filter driven by an i.i.d. process

since the Kalman filter converges to the recursive Wiener
filter for time-invariant stable systems [2].

The relationship between the spectral-domain approach and
the innovations approach is explained by the canonical spec-
tral factorization, which is well established for the state-space
model. The asymptotic variance of the innovations sequence is
the key parameter in both cases. The relationship between the
asymptotic performance of the Neyman–Pearson detector and
that of the Kalman filter is evident in (21) for the state-space
model. In both cases, the innovations process plays a critical
role in characterizing the performance, and the asymptotic vari-
ance of the innovation is sufficient for the calculation of the error
exponent for the Neyman–Pearson detector and the steady-state
error variance for the Kalman filter.

IV. PROPERTIES OF ERROR EXPONENT

In this section, we investigate the properties of the error expo-
nent derived in the preceding section. We particularly examine
the large sample error behavior with respect to the correlation
strength and SNR. We show that the intensity of the additive
noise significantly changes the error behavior with respect to the
correlation strength, and the error exponent has a distinct phase
transition in behavior with respect to the correlation strength de-
pending on SNR.

Theorem 2 ( Versus Correlation): The error exponent is
a continuous function of the correlation coefficient (

) for a given SNR . The error exponent as a function of
correlation strength is characterized by the following.

i) For SNR , is monotonically decreasing as the
correlation strength increases (i.e., ).

ii) For SNR , there exists a nonzero value of the
correlation coefficient that achieves the maximal , and

is given by the solution of the following equation:.

(25)

where . Furthermore, converges to one as
goes to zero.

Proof: See the Appendix.

We first note that Theorem 2 shows that an i.i.d. signal gives
the best error performance for a given SNR with the max-
imal error exponent being . (In
this case, Theorem 1 reduces to Stein’s lemma.) The intuition
behind this result is that the signal component in the observa-
tion is strong at high SNR, and the innovations (the new in-
formation) provide more benefit to the detector than the noise
averaging effect present for correlated observations. That is,
simple radiometry provides sufficient detection power when the
signal level is above that of the noise. Fig. 1 shows the error
exponent as a function of the correlation coefficient for SNR

10 dB. The monotonicity of the error exponent is clearly
seen; moreover, we see that the amount of decrease becomes
larger as increases. Notice also that the amount of performance
degradation from the i.i.d. case is not severe for weak corre-
lation and the error exponent decreases suddenly near
andeventually becomes zero at . (It is easy to show that
the miss probability decays with for any SNR at .)



1358 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006

Fig. 1. K versus correlation coefficient a (SNR =) 10 dB: p = N (0; � ),
p = N (0;� + � ).

Fig. 2. K versus correlation coefficient a (SNR = �3;�6;�9 dB).

In contrast, the error exponent does not decrease monotoni-
cally in for SNR , and there exists an optimal correlation
as shown in Fig. 2. It is seen that the i.i.d. case no longer gives
the error performance for a fixed SNR. The error exponent ini-
tially increases as increases, and then decreases to zero as
approaches one. As the SNR further decreases (see the cases of

6 and dB) the error exponent decreases for a fixed corre-
lation strength, and the value of achieving the maximal error
exponent is shifted closer to one. At low SNR, the noise in the
observation dominates. So, intuitively, making the signal more
correlated provides greater benefit of noise averaging. The lower
the SNR, the stronger we would like the correlation to be in
order to compensate for the dominant noise power, as shown
in Fig. 2. However, excessive correlation in the signal does not
provide new information by observation, and the error exponent
ultimately converges to zero as approaches one. Notice that the
ratio of the error exponent for the optimal correlation to that for
the i.i.d. case becomes large as SNR decreases. Hence, the im-
provement due to optimal correlation can be large for low SNR
cases. Fig. 3 shows the value of that maximizes the error ex-
ponent as a function of SNR. As shown in the figure, unit SNR
is a transition point between two different behavioral regimes
of the error exponent with respect to correlation strength, and
the transition is very sharp; the optimal correlation strength
approaches one rapidly once SNR becomes smaller than one.

Fig. 3. Optimum correlation strength versus SNR.

Fig. 4. K versus SNR(a = e ).

The behavior of the error exponent with respect to SNR is
given by the following theorem.

Theorem 3 ( Versus SNR): The error exponent is mono-
tonically increasing as SNR increases for a given correlation co-
efficient . Moreover, at high SNR, the error exponent

increases linearly with respect to .
Proof: See the Appendix.

The detrimental effect of correlation at high SNR is clear.2

The performance degradation due to correlation is equivalent
to the SNR decreasing by factor . The
increase of w.r.t. SNR is analogous to similar error-rate be-
havior arising in diversity combining of versions of a communi-
cations signal arriving over independent Rayleigh-faded paths
in additive noise, where the error probability is given by

SNR and is the number of independent multipaths. In
both cases, the signal component is random. The SNR be-
havior of the optimal Neyman–Pearson detector for stochastic
signals applies to general correlations as well with a modified
definition of SNR. Comparing with the detection of a determin-
istic signal in noise, where the error exponent is proportional to
SNR, the increase of error exponent w.r.t. SNR is much slower
for the case of a stochastic signal in noise. Fig. 4 shows the error
exponent with respect to SNR for a given correlation strength.
The SNR behavior is evident at high SNR.

2Interestingly, the error exponent at high SNR has the same expression as the
capacity of the Gaussian channel.
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V. EXTENSION TO THE VECTOR CASE

In order to treat general cases in which the signal is a higher
order AR process or the signal is determined by a linear com-
bination of several underlying phenomena, we now consider a
vector state-space model, and extend the results of the previous
sections to this model. The hypotheses for the vector case are
given by

(26)

where is a known vector and is the
state of an -dimensional process at time following the state-
space model

(27)

We assume that the feedback and input matrices, and , are
known with for all , and the process noise
independent of the measurement noise . We also assume
that the initial state is independent of for all , and the
initial covariance satisfies the following Lyapunov equation:

(28)

Thus, the signal sequence forms a stationary vector
process. In this case the SNR is defined similarly to (5) as

. The autocovariance of the observation sequence
is given by

under
under

(29)
where is the Kronecker delta. Thus, the covariance matrix of
the observation under is a symmetric Toeplitz matrix with

as the th off-diagonal entry ( ). Since
for all , is an absolutely summable sequence
and the eigenvalues of the covariance matrix of is bounded
both from below and from above.

Theorem 4 (Error Exponent): For the Neyman–Pearson de-
tector for the hypotheses (26) and (27) with level
(i.e., ) and for all , the error exponent of
the miss probability is given by (21) independently of the value
of . The steady-state variances of the innovation process
and calculated under and , respectively, are given by

(30)

where is the unique stabilizing solution of the discrete-time
algebraic Riccati equation

(31)

and

(32)

where is the unique positive-semidefinite solution of the fol-
lowing Lyapunov equation:

(33)

and .
In spectral form, is given by (19), where

and is given by

(34)

Proof: See the Appendix.

For this vector model, simple results describing the proper-
ties of the error exponent are not tractable since the relevant ex-
pressions depend on the multiple eigenvalues of the matrix .
However, (21), (31), and (33) provide closed-form expressions
for the error exponent which can easily be explored numerically.

VI. SIMULATION RESULTS

To verify the behavior of the miss probability predicted by our
asymptotic analysis, in this section we provide some simulation
results. We consider the scalar model (4), for SNR of 10 and

3 dB, and for several correlation strengths. The probability of
false alarm is set at 0.1% for all cases we consider.

Fig. 5 shows the simulated miss probability as a function of
the number of samples for 10-dB SNR. It is seen, as predicted
by our analysis, that the i.i.d. case ( ) has the largest slope
for error decay, and the slope is monotonically decreasing as
increases to one. Notice that the error performance for the same
number of observations is significantly different for different
correlation strengths for the same SNR, and the performance
for weak correlation is not much different from the i.i.d. case,
as predicted by Fig. 1. It is also seen that the miss probability
for the perfectly correlated case ( ) is not exponentially
decaying, again confirming our analysis.

The simulated error performance for SNR of 3 dB is shown
in Fig. 6. It is seen that the asymptotic slope of increases
as increases from zero as predicted by Theorem 2, and reaches
a maximum with a sudden decrease after the maximum. Notice
that the error curve is still not a straight line for the low SNR
case due to the term in the exponent of the error proba-
bility. Since the error exponent increases only with SNR,
the required number of observations for 3-dB SNR is much
larger than for 10-dB SNR for the same miss probability. It is
clearly seen that is still larger than for 200 samples
whereas it is with 20 samples for the 10-dB SNR case.
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Fig. 5. P versus number of samples (SNR =10 dB).

Fig. 6. P versus number of samples (SNR = �3 dB).

VII. CONCLUSION

We have considered the detection of correlated random signals
using noisy observations. We have derived the error exponent for
the Neyman–Pearson detector of a fixed level using the spectral
domain and the innovations approaches. We have also provided
theerrorexponent inclosedformfor thevectorstate-spacemodel.
The closed-form expression is valid not only for the state-space
model but also for any orthogonal transformation of the original
observations under the state-space model, since the spectral
domain result does not change by orthogonal transformation and
Theorem 1 is a closed-form expression of the invariant spectral
form. We have investigated the properties of the error exponent
for the scalar case. The error exponent is a function of SNR and
correlation strength. The behavior of the error exponent as a
function of correlation strength is sharply divided into two
regimes depending on SNR. For SNR , the error exponent

is monotonically decreasing in the signal correlation. On the
other hand, for SNR , there is a nonzero correlation strength
that gives the maximal error exponent. Simulations confirm the
validity of our asymptotic results for finite sample sizes.

APPENDIX

Proof of Theorem 1

Since the error exponent for the Neyman–Pearson detector
with a fixed level is given by the almost-sure limit of
the normalized LLR under (if the limit ex-
ists) [31]–[34], we focus on the calculation of the limit. We
show that converges almost surely (a.s.) under for
Gauss–Markov signals in noise using the limit distribution of
the innovations sequence. The LLR is given by

(35)
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We have, for the second term on the right-handed side (RHS)
of (35)

and so, under

(36)

a.s. (37)

since a.s. under as
by the SLLN. Now consider the first term on the RHS of (35).
The log-likelihood under can be obtained via the Kalman
recursion for the innovations [1], [6]. Specifically, define

and . Then

(38)

Hence,

(39)

where . Since the joint distribution of
is Gaussian, the conditional distribution

is also Gaussian with mean and variance
. is expressed using the innovations representation by

(40)

where the MMSE prediction of is the conditional
expectation and the innovation is given by

with variance . Hence,

(41)

The second term on the RHS of (41) is not random, and we have

(42)

by the Cesáro mean theorem since and
for all where is given by

(43)

and where is the steady-state error variance of the optimal
one-step predictor for the signal . Now representing as a
linear combination of gives

(44)

where is the Kalman prediction gain,
is the error variance at time , is

the linear MMSE prediction of given . Since the Kalman
filter converges asymptotically to the time-invariant recursive
Wiener filter for , we have asymptotically

(45)

where is the steady-state Kalman prediction gain. Thus,
under , the innovations sequence becomes the output of a
stable recursive filter driven by an i.i.d. sequence , and it
is known to be an ergodic sequence. By the ergodic theorem,

converges to the true expectation, which is given by

(46)

since is an independent sequence under . Substi-
tuting and , we have

(47)
Now, the last term on the RHS of (41) is given by

(48)

(49)

where some positive constant and by the exponential
convergence of to . The first term in (49) converges to

and the second term converges to zero since
converges to a finite constant and . Hence, (21)
follows for . When , we have

and . We also have , in (22)–(24)
at . Thus, (20) has a value of zero at , and Theorem
1 holds for .

Now we show that (21) is equivalent to the spectral domain
result (19) using spectral factorization. From the spectral do-
main form (19) we have

(50)

First, consider the first term on the RHS of (50). The argument of
the logarithm is the power spectral density of the observation se-
quence under . From Wiener filtering theory, the canon-
ical spectral factorization for is given by ([2, p. 275])

(51)
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where is the whitening filter. Hence, we have

where the last step follows from the cancellation of two other
terms in para-Hermitian conjugacy. Now, consider the second
term on the RHS of (50). From (51), we have

(52)

which is the spectral density of the innovations process under
divided by , since is an i.i.d. sequence with vari-

ance under and is the whitening filter. Since the
variance of a stationary process is given by the autocovariance
function setting , we have, by the definition of

(53)
since the spectral density is the Fourier transform of the autoco-
variance function. ((23) is an explicit formula for (53).) Hence,
we have

(54)

and (50) is given by

(55)

which is the error exponent in Theorem 1 that we derived using
the innovations approach.

Lemma 1: The partial derivative of the error exponent with
respect to the correlation coefficient is given by

(56)

for a fixed SNR , where and .

It is easily seen that the partial derivative is a continuous
function of for since is a continuous function of

from (22) and (24).

Proof of Lemma 1: We use the spectral domain form for
the error exponent

(57)

where

(58)

The spectral density of the observation sequence is given
by

(59)
where , and its canonical spectral factorization
is given by ([2, p. 242])

(60)

where ( and ) and

(61)

The partial derivative of with respect to is given by

(62)
where

(63)

Consider the first term on the RHS of (62). Using the canonical
spectral decomposition (60), we have

Residues of integrand

(64)

where we have substituted , and used the residue the-
orem. The second term on the RHS of (62) is similarly obtained
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where

(65)

Hence, is given by

(66)

Proof of Theorem 2

First, the continuity of in (21) is straightforward as a func-
tion of and since , and the continuity of and

is also trivial as a function of and from (22) and (23).
Thus, we need only to show the continuity of as a function of

, i.e., the nonnegativity of the argument of the square root in
(24). The argument can be rewritten as

(67)
which is nonnegative if either or

if . Thus, is a continuous function of ( ) for
any SNR .

i) SNR :
Since in (66), we have

(68)

where and we have used the relation
in the canonical spectral factorization. (See [2, p.

242].) We also have the relation

(69)

which implies

(70)

since . Hence, for the last term in the numerator of
(68) we have

(71)

The RHS of (71) is positive for ,
which reduces to the condition . Since

for (72)

we have

(73)

Hence, for and , and is monotoni-
cally decreasing as for .

ii) SNR :
For a given , denote the last term in the numerator of (68)

by

(74)

Then, we can write

(75)

since and for from (61). We
have for and from (68) since

. Hence, increases as increases in the neighborhood
of with
if . However, as approaches one since

at . Hence, achieves a maximum at
nonzero for SNR since is a continuous function
of , and the value of achieving the maximum is given by

since is also continuous with .
As SNR , we have

and (76)

The last term in the numerator of (68) is given by

(77)

for as . Hence, for any , there exists
small enough such that for all

This guarantees that for for
, and .

Proof of Theorem 3

Let where is given by (58). Then,
from (57), the partial derivative of w.r.t. is given by

(78)

where

(79)
and

(80)
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(86)

for . Hence,

(81)

and the error exponent increases monotonically as SNR in-
creases for a given ( ).

At high SNR, we have

Hence, from (21), the error exponent is given at high SNR by

(82)

Since the first term is dominant at high SNR, the theorem fol-
lows.

Proof of Theorem 4

Since the error exponent is given by the asymptotic Kull-
back–Leibler rate (3) and its representation by innovations for
the vector case is the same as (36) and (41). We need only to
calculate and for the vector model.

The steady-state variance for the innovations under is
given by the conventional result of the state-space model

(83)

and is the unique Hermitian solution of the discrete-time Ric-
cati equation

(84)

such that is stable (the existence of the solution is
guaranteed since is stable, , and
due to the additive noise (see [2, p. 277]), where

(85)

For , we again represent as a linear combination of
, and is given by (86) at the top of the page,

where is the Kalman prediction gain given by

with the one-step prediction error covariance matrix [2].
Since the Kalman filter converges asymptotically to the time-in-
variant recursive Wiener filter when is stable, we have asymp-
totically

(87)

where is the steady-state Kalman prediction gain. Thus, the
innovation sequence becomes the output of a stable recursive
filter driven by the i.i.d. sequence under as in the scalar
case, and the ergodic theorem holds for .

(88)

Let be defined as

(89)

is finite since is stable by the property of the solu-
tion of (84), and is given by the unique solution of the following
Lyapunov equation:

(90)

(Since is stable and , there exists a
unique, Hermitian, and positive semi-definite solution of (90)
[2].) The spectrum for the vector model is given by (34) [2].
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