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Abstract—We consider distributed detection with a large
number of identical binary sensors deployed over a region where
the phenomenon of interest (POI) has spatially varying signal
strength. Each sensor makes a binary decision based on its own
measurement, and the local decision of each sensor is sent to a
fusion center using a random access protocol. The fusion center
decides whether the event has occurred under a global size
constraint in the Neyman–Pearson formulation. Assuming homo-
geneous Poisson distributed sensors, we show that the distribution
of "alarmed" sensors satisfies the local asymptotic normality
(LAN). We then derive an asymptotically locally most powerful
(ALMP) detector optimized jointly over the fusion form and the
local sensor threshold under the Poisson regime. We establish
conditions on the spatial signal shape that ensure the existence
of the ALMP detector. We show that the ALMP test statistic is
a weighted sum of local decisions, the optimal weights being the
shape of the spatial signal; the exact value of the signal strength
is not required. We also derive the optimal threshold for each
sensor. For the case of independent, identically distributed (iid)
sensor observations, we show that the counting-based detector is
also ALMP under the Poisson regime. The performance of the
proposed detector is evaluated through analytic results and Monte
Carlo simulations and compared with that of the counting-based
detector. The effect of mismatched signal shapes is also investi-
gated.

Index Terms—Asymptotically locally most powerful (ALMP),
distributed detection, fusion rule, local asymptotic normality
(LAN), Neyman–Pearson criterion, spatial Poisson process, spa-
tially varying signal.

I. INTRODUCTION

A. Detection in Large-Scale Sensor Field

WE CONSIDER the detection of phenomenon in a geo-
graphical area using a large number of densely deployed

microsensors. The sensors measure the phenomenon of interest
(POI) and transmit their local data (the binary decision) via
wireless channel to a central site for global processing. A spe-
cific implementation is the Sensor Network with Mobile Access
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Fig. 1. Sensor network with mobile access points.

(SENMA) architecture [30], where a mobile access point or in-
terrogator collects local decisions from sensors using random
access schemes such as ALOHA; see Fig. 1. We assume that the
number of sensors in the field is large, which makes it necessary
that each sensor is inexpensive and has limited computation and
communication capability.

Detection in a large-scale sensor network faces several chal-
lenges not encountered in the classical distributed detection
problem. First, inexpensive sensors are not reliable; they have
low duty cycles and severe energy constraints. The communi-
cation link between a sensor and the central unit is specially
weak due to a variety of implementation difficulties such as
synchronization, fading, and interference from other sensors.
The probability that the local decision at a particular sensor
can be successfully delivered to the central unit can be very
low. Second, POI in a wide geographic area generates spatially
varying signals, which makes the observation at each sensor lo-
cation-dependent and not identically distributed. Furthermore,
the strength of POI is unknown in many applications such as the
detection of environmental hazards such as nuclear, biological,
and chemical (NBC) activities. Third, the scale of the network
makes it more practical to deploy sensors randomly without
careful network layout. It is thus not possible to predict whether
data from a particular sensor can be retrieved by the central
processing unit, especially when random access protocols are
used. Consequently, the decision rule for each sensor should
be optimized before deployment without knowing its exact
location and signal strength. In addition, because sensors may
expire and the collection process is random, the optimal deci-
sion should not critically depend on the number of available
sensors or on the collection process.

B. Approach and Summary of Results

For large-scale sensor networks it is natural to consider
asymptotic techniques, and one expects that the central limit
theorem will lead to a design under Gaussian statistics. For
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example, if the measurements at the sensors are conditionally
independent and identically distributed (iid), it is well known
that the global decision is made by counting the number of
alarmed sensors collected from the sensor field, and the decision
statistics will converge to a Gaussian random variable. When
the measurements are not identically distributed across sensors
or spatially varying, it is reasonable that the global detector
should weight the decision of each sensor appropriately since
sensors closer to the source (i.e., those with better SNR) pro-
duce more reliable decisions. For the example of detection of
simple hypotheses, the weight is obtained by the local detection
and false alarm probability at each sensor [16]. However, what
should be the optimal weighting when the local detection or
false alarm probability at each sensor is unknown? What are
the factors affecting the weighting? Is there an assurance of
asymptotic optimality?

Our approach is based on the local asymptotic normality
(LAN) and asymptotic efficiency of detector in Le Cam sense.
The LAN is a property of a statistical model itself not of
detectors and simplifies the analysis and design of asymptotic
procedures. The key idea is that if a sequence of statistical
(parametric) models satisfies the LAN condition, then the
sequence of statistical models is represented in the limit by
Gaussian shift model where the analysis is much more tractable
[1], [2]. (A brief summary of LAN-related results pertinent to
our work is given in [31].) Our goal is to find decision rules for
sensors and the central unit that are asymptotically efficient.
Specifically, we find local and global decision rules that, for a
given probability of false alarm (PFA) for the global decision,
maximize the probability of detection as the number of sensors
goes to infinity.

We model the POI over the region as a deterministic spatial
signal with known shape but unknown signal strength. While
the assumption of known signal shape is restrictive; the model
of unknown signal strength is almost necessary in practice be-
cause it is unreasonable to assume that POI can be calibrated.
From a theoretical point of view, not knowing the signal strength
makes the detection problem more difficult and also more inter-
esting in the asymptotic regime. For example, the direct use of
error exponent to characterize performance as in [27] and [28]
is no longer valid since the number of alternative hypothesis is
uncountable. Indeed, if the signal strength is known, the error
probability of any reasonable detector will always decay to zero
as the number of collected sensor detections increases.

We assume that a Medium Access Control (MAC) protocol
(such as ALOHA) is used to collect local decisions where each
sensor has a probability to transmit its decision successfully
to the central unit. In order to exploit spatial variation of the POI,
it is necessary, as we shall assume, that the fusion center knows
the location of each sensor through the use of a geolocation de-
vice at each sensor or other methods.

We assume that randomly deployed sensors form a homoge-
neous spatial Poisson process. For the model of independent ad-
ditive noise at each sensor, the marking by the local decision of
each sensor is equivalent to a location-dependent thinning of the
initial Poisson process; the alarmed sensors form a nonhomo-
geneous Poisson process. The process of retrieving sensor de-
cisions from the sensor field is another thinning of the alarmed

sensors. The Poisson assumption allows us to combine the two
thinning procedures at the physical and MAC layer and model
the alarmed sensors at the central unit as a nonhomogeneous
Poisson process with an intensity that is a function of the POI.
Hence, the distributed detection problem is converted to detec-
tion based on the intensity of the observed alarmed sensors.

Applying the LAN of Le Cam, we derive 1) sufficient con-
ditions on the spatial signal shape that guarantee the existence
of asymptotically locally most power (ALMP) detector; 2) an
asymptotic local upper bound (ALUB) on the power of any de-
tector as a function of design parameters like sensor density,
signal shape, MAC success probability, etc., and 3) an asymp-
totically locally jointly optimal rule over the fusion scheme and
the single sensor threshold. For the special case that the power
function of a single sensor is linear with respect to the signal
strength, the proposed detector is also asymptotically uniformly
most powerful.

Our numerical results are designed to answer a number of
practical questions. Since the detector is based on asymptotic
techniques, one questions what the size of network is for which
the asymptotic analysis is accurate. The simulations show that
the performance of a network of size 1000 matches well with the
theoretic prediction. We will see that the proposed ALMP de-
tector offers a significant gain over simplistic counting schemes.
Since we assume the knowledge of signal waveform in the de-
tector design, we also consider the case of waveform mismatch
in our simulations. The sensitivity of the mismatch, of course,
depends on the specific shape of the signal waveform. For the
class of symmetric exponentially decaying waveforms, we find
that a simple step function approximation offers graceful degra-
dation. Further, we find that the performance is robust to pertur-
bations in the assumed locations of the sensors.

C. Related Work

Distributed detection using multiple sensors and optimal
fusion rules has been extensively investigated; see [12]–[14].
Many authors have derived optimal local detector and fusion
rules under various scenarios based on different sets of as-
sumptions, e.g., [15], [17], and [18]. For the fusion scheme,
Chair and Varshney [16] showed that the optimal fusion rule
is a likelihood ratio test on the decisions from the sensors and
becomes a threshold detector on the weighted sum of binary
sensor decisions; the weight is obtained using the local detec-
tion and PFA at each sensor under each hypothesis. However,
the optimal criteria are obtained under the assumption that
the hypotheses of the underlying phenomenon are simple, i.e.,
discrete and finite. These approaches require the knowledge of
the detection probability as well as the PFA at each sensor under
each possible hypothesis; however, in the problem considered
here we do not have such information.

The detection of an unknown signal or a signal with unknown
amplitude has been considered by several authors under the
composite hypothesis formulation. The locally optimal detector
for centralized schemes is known [20], [21]. Poor and Thomas
considered the locally optimal detector for stochastic signals
and compared the detectors using the asymptotic relative effi-
ciency (ARE) of the centralized detection scheme [22]. For the
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distributed or decentralized case, Aalo and Viswanathan consid-
ered the detection of an unknown signal via multilevel quanti-
zation and simple fusion rules [24]. However, no optimality for
the fusion rule was considered. The works of Fedele et al. [25]
and Srinivasan [26] are perhaps the closest to our approach. In
both cases, the authors considered a distributed scheme where
multiple peripheral detectors or sensors are combined at a fusion
center, and the number of observations per each sensor goes to
infinity. These assumptions are reasonable for the classical radar
problem. For large-scale microsensor networks, however, it is
reasonable to assume that each sensor has only a few chances
for observations and transmissions, due to limited battery power,
and to consider the asymptotic case where the number of sen-
sors goes to infinity, but with a limited number of observations
per sensor as in this paper. Srinivasan derived the optimal local
rule and fusion rule based on Bayes rule and summation over
all realizations of sensor decisions [26]. However, it is difficult
to extend this approach to yield explicit fusion rules for the sce-
nario considered in this paper.

The asymptotic case where the number of sensors goes to
infinity was also considered by several authors from different
perspectives. For example, the error exponent was used as the
asymptotic performance measure to show the optimality of iden-
tical sensors when the observations are iid [27], [28]. In [29], the
authors considered the optimality of identical binary sensors for
the capacity limited reachback channel.

D. Notation

The statistical experiment or model is described as
follows. An event is observed such that the probability
distribution of is from a parametric family of probability mea-
sures , all defined on the same measurable
space ; the true parameter is unknown. The statistical
experiment or model is simply denoted by . The
sequence of statistical models is denoted by ,
where . Notice that the parameter space

does not change with the sequence index in our formulation,
and the superscript does not denote the product space or
measure in general. It can be an arbitrary sequence of measur-
able spaces and probability measures. For the product distribu-
tion of iid , we use the notation . For a sequence of
random vectors defined on , is the statistical
expectation of under probability distribution . The no-
tation means that is Gaussian with mean and
covariance . The set of real numbers is denoted by . Vectors
and matrices are written in boldface. Operation indicates
the matrix transpose.

II. SYSTEM MODEL

We consider a large-scale sensor network with identical bi-
nary sensors deployed over a wide area; we want to decide
whether the POI has occurred in the area. We assume that each
sensor makes a decision based on its own observation and that
the local decisions are collected through a MAC at a central

Fig. 2. Sensor observation model at location x .

unit or fusion center where the global decision is made under
a level(PFA) constraint. The POI is spatially varying with a
known1 shape function and an unknown magnitude. For ex-
ample, in the case of NBC activity the signal strength is expected
to be largest at the origin of the phenomenon and to decay away
from the origin. We assume that the spatial signal is determin-
istic and denote the signal strength by

(1)

where denotes the location, is an unknown
amplitude, and is a known function which incorporates the
information about the spatial variation of the underlying phe-
nomenon.

A. Single Sensor

We assume that sensors make their local decisions indepen-
dently without collaborating with other sensors. Since the exact
value of the signal strength is unknown, we design each sensor
to decide between the following (composite) hypotheses

null hypothesis

alternative hypothesis (2)

with local size constraint of . Using the amplitude parameter
, the hypotheses (2) is equivalently expressed by

(3)

The local decision of sensor located at is denoted by

if is rejected
otherwise.

(4)

We consider the additive noise model for sensor measurement
shown in Fig. 2, where the sensor observation is given by

(5)

where is the sensor measurement noise, assumed to be inde-
pendent across sensors, with distribution . Here, we as-
sume that the distribution admits a local UMP detector
at the sensor level for hypotheses (2) as

(6)

1We need not assume that the shape function s(x) is known a priori before
sensor deployment or at the data retrieval period. See Section III-D for the es-
timation of s(x) from collected binary sensor decisions and sensor locations.
This includes the case where the shape function is parameterized, with unknown
parameters that must be estimated.
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Fig. 3. (a) Initial sensor deployment over space. (b) Signal strength of
underlying phenomenon. (c) Local decisions of sensors.

where is chosen to satisfy the size for a single sensor de-
cision. Such includes continuous symmetric distribution
around zero that decreases monotonically as increases from
zero. For the example of Gaussian noise model ,
we have the threshold , where denotes
the tail probability .

We define as the probability that a sensor located at
rejects . That is,

Pr (7)

Note that this probability is not conditioned on hypothesis
or . The probability is a function of the local threshold
and the signal strength at and is given by

(8)

Dependence on the pdf of the observation noise is through
the threshold . For the additive Gaussian observation model,

is expressed as .

B. Parametric Poisson Model

Consider that a large number of identical sensors described
in Section II-A are deployed randomly and uniformly over a re-
gion , as shown in Fig. 3(a). We assume that the initial distribu-
tion of sensors over the region is a homogeneous spatial Poisson
process with local intensity . This is a reasonable model when
the random location of each sensor is uniformly distributed over

. Each sensor makes a local decision about the underlying phe-
nomenon. Specifically, sensor located at makes a binary
decision based on its observation, encodes its decision, and
then sends its packet over a MAC to the central unit.

Since we assume that each sensor makes the decision by itself
and the sensor noise is independent, the local decision is inde-
pendent conditioned on the signal strength . By the Poisson
assumption on the initial sensor locations, the marking by the
local decision of each sensor is equivalent to a location-depen-
dent thinning of the original sensor distribution with thinning
probability . Hence, the distribution of the alarmed sen-
sors, i.e., sensors with , forms a nonhomogeneous spatial
Poisson process.

During the data-retrieval period the local decisions of the sen-
sors are collected through wireless channel. Sensor data can

be lost during the transmission due to fading as well as colli-
sions. We model this probabilistic loss as another thinning of
the Poisson process of alarmed sensors (PPAS). We assume that
all the sensors have the same probability of successful transmis-
sion2 and denote it by . Then, the second thinning is uniform
over the region with probability . The distribution of alarmed
sensors at the fusion center or final data collector is a nonhomo-
geneous spatial Poisson process, and its local intensity is given
by

(9)

where . When the function
is linear, or is in a small neighborhood of (i.e.,

the signal is weak), the Poisson process of alarmed sensors is
described by a nonhomogeneous intensity model parameterized
by amplitude given by

(10)

where

(11)

for a given . Note that the intensity variation of alarmed
sensors is a scaled version of the spatial signal shape .

Since the initial sensor distribution is assumed to be Poisson,
we are able to convert the original detection problem to one of
detecting an inhomogeneous Poisson process whose intensity
function depends upon the spatial signal at the alarmed sensors.
(This is what we mean by "Poisson regime" in this paper.) As we
will show later, the asymptotic detector requires the knowledge
of the signal and of the location of the reporting sensors;
however, the asymptotic detector will be shown to be surpris-
ingly robust with respect to the shape function as well as
its "origin."

III. DETECTION OF SPATIALLY VARYING SIGNAL

In the previous section, we assumed that the initial sensor
distribution is Poisson and showed that the original detection
problem using identical binary sensors is converted to the
problem (10), (11), and (3) of detecting Poisson processes with
different intensities.

Under asymptotic local optimality we focus on the detection
of the alternative which converges to the null hypothesis ,
where the distributions of the null and alternative hypotheses are
not entirely asymptotically separated (EAS). The existence of
an asymptotic locally optimal detector (ALOD) requires some
conditions on the underlying statistical model. Le Cam’s theory
provides an analytic framework for such detection problems and
gives an asymptotic optimal criterion. When a statistical model
satisfies the LAN condition [1], [2], [4], we can construct an
asymptotic local upper bound on the power of any sequence of
detectors with a given asymptotic size, and we can construct a
sequence of detectors that achieves this bound.

2The equal probability assumption for successful transmission may be restric-
tive. However, this gives a reasonable approximation when the data collector has
control over sensor transmissions.
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In Appendix I, we construct a sequence of statistical models
for PPAS and establish its LAN property. Based on this, we
obtain an ALUB on the power of any detector with a given size,
and we derive the ALMP detector for the model (10), (11), and
(3) under the Poisson regime, as the number of sensors goes to
infinity for a fixed area.

A. ALMP Detector Under the Poisson Regime

In Appendix I, we show that the Poisson process of the
alarmed sensors, with increasing sensor density, satisfies the
LAN condition for a general family of signal shapes. The
construction of an ALMP detector is then straightforward. An
ALMP detector is given by the score test using the central
sequence [4], [31].

Theorem 1: Let conditions C.1)–C.3) be satisfied.

C.1) , and ;
C.2) ;
C.3) ;

where is defined in (11). Then, an asymptotic upper bound
on the power of any sequence of detectors with size , i.e.,

, is given by

(12)
for any , where

(13)

Furthermore, the following sequence of (nonrandomized) detec-
tors is ALMP with size for (10), (11), and (3).

Decide if
Decide if

(14)

where the central sequence is given by

(15)

and ’s are the (random) locations of alarmed sensors in the
area .3.

Proof: See Appendix II.
The conditions in Theorem 1 are mild and are discussed in

Appendix I. Equations (12) an (13) reveal how various factors
such as sensor density , the probability of packet loss ,
the spatial signal shape , and the single sensor threshold ,
affect the asymptotic global power. Note that as expected, the
power of the detector increases monotonically with sensor den-
sity, signal strength, and MAC transmission success rate. We
observe that if the signal strength is halved, sensor density must
be quadrupled in order to maintain the asymptotic performance.
This is consistent with the notion of fusing independent signal

3n is not the number of sensors. It is the index for the statistical experiment
described Appendix I-B. The average number of sensors inA is given by n� .

decisions. Since the ALMP test statistic (the central sequence
) has a limit distribution under the null distribution
by the LAN condition, it is easy to see that the detector (14)

has an asymptotic size of . Notice that the ALMP test statistic
consists of a weighted sum of binary sensor decisions, where the
optimal weight is , which is the shape of underlying spatial
signal . Thus, the confidence in each sensor decision is pro-
portional to the strength of the signal (the SNR) at the sensor lo-
cation. This can be considered as matched filtering in the spatial
domain, although it is different from the conventional matched
filtering in that the received signal is a collection of random
points with an intensity function determined by the input signal,
whereas the received signal is simply the distorted version of
the input signal for the conventional case. A related problem
and approach is in [11], where the author considered a binary
on–off detection problem in optical transmissions. The author
assumed that the photon generation epochs were Poisson points
and showed that the optimal weight is the intensity of input light
under a Bayesian formulation of two simple hypotheses. How-
ever, the exact knowledge of the intensity of light was required
rather than just the relative shape. In our proposed method, the
optimal test can be implemented without obtaining the exact
value of , since the optimal weight requires only the local
intensity variation of alarmed sensors, and any scaling of

is irrelevant in forming the statistic (15).
An intuitive interpretation is given by a step function given

by

(16)

where is the difference set. In this case, the local deci-
sions from only the sensors located within the region , where
the phenomenon would occur, are counted discarding the false
alarms from the regions of no event. For more complicated
signal shapes such as (25), the local decisions from sensors are
weighted according to the relative strength of the underlying
signal.

B. Optimization of Threshold for a Single Sensor

In Section III-A, we derived an ALMP detector. The optimal
local threshold for a single sensor described in Section II-A is
now obtained through the asymptotic (local) upper bound (12)
and (13). Since the bound is a function of the local threshold and
achieved by the proposed ALMP detector, the optimal threshold
for a single sensor is the one that maximizes the asymptotic
upper bound. In Section IV, we show that the asymptotic bound
can be achieved with a reasonable number of sensors.

Theorem 2: Suppose that the power function for
a single sensor is continuous and piecewise differentiable in the
variable . Under the Poisson regime, the following
threshold for a single sensor maximizes the global power for a
fixed and sufficiently large number of sensors in the region

(17)

where .
Proof: See Appendix II.
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For the example of Gaussian noise model, we have
, ,

and . The optimal
local size is , and the corresponding local threshold

(we verify this via simulations in Section IV).
Notice that under the assumption of binary decisions and
Poisson distributed sensors, the individual sensors need not be
very good; a design with a PFA of 0.27 is optimal! We also note
that for the AWGN model, is fairly flat around
its maximum so that it is not critical to use the optimal and

values. The threshold for the AWGN case coincides with
the one obtained for nonparametric detection of symmetric
distribution using dead-zone limiter with iid observations [23].
This implies that we should design the single sensor assuming
the signal shape is uniform over the area if the information of
the signal shape is not available before sensor deployment and
identical sensors are to be deployed over the field. (This is the
case that we consider in Section II-B.) In this case, the local
sensors need not know the signal shape; further, the optimal
local threshold does not depend on the signal shape .
Thus, a deployed set of sensor nodes can be used to detect
different signatures, and only the fusion center needs to know
the signature.

Notice that the optimal fusion rule (15) and the local threshold
(17) do not depend on the parameter . Hence, the optimal rule
is actually an asymptotically uniformly most powerful detector
when the model (10) is true for all , for example, when
the power function for a single sensor is linear in . However,
in general, our conversion to the Poisson regime is valid in the
local neighborhood of for a typical power function .

C. Independent and Identically Distributed Observations

If the signal is constant,

(18)

then the sensor observations, for the model described in Sec-
tion II, become iid. The optimality of the counting-based de-
tector is given by the following corollary of Theorem 1.

Corollary 1: For iid sensor observations over , the
counting-based detector is ALMP with size under the
Poisson regime.

Proof: In this case, the central sequence is given by [see
(15)]

(19)

where is the number of alarmed sensors in space ,
and is the area of .

Note that is a Poisson random variable with mean
under the null hypothesis. Since the mean and vari-

ance are equal for Poisson random variables, is centered
and normalized to have variance one. The Gaussian limit dis-
tribution of under the null hypothesis is explained as fol-
lows. Suppose that we partition into subregions with an
equal area for the th experiment. Under the null hypothesis,
we have from (34) in Appendix I. Therefore,
the number of alarmed sensors in each subregion is a Poisson
random variable with mean regardless of and is iid over

subregions under the Poisson assumption. Since is the
sum of number of points in each subregion, it is a sum of iid
random variables, and converges in distribution to
as goes to infinity by the classical central limit theorem (CLT).

A different counting-based detector can be constructed for the
iid case based on the Binomial distribution [19]. Let the number
of sensors in be . Under , for all and

(20)

Recall that the are the binary sensor decisions. Using the CLT,
the asymptotic distribution of is given by

(21)

as the number of sensors goes to infinity. Hence, the detector
is given by

Reject if (22)

The distributions for the number of alarmed sensors in (19) and
(21) have different variances for the same mean (i.e.,

) under two different models. It is well known that the bi-
nomial distribution converges to Poisson distribution with mean

when goes to infinity with constraint . Therefore,
when is small, the two distributions are almost equivalent.

D. Discussion

The construction of the ALMP test statistic in (15) re-
quires the knowledge of several parameters such as the null in-
tensity , the sensor locations, and the shape of the underlying
spatial signal, but the null intensity can be obtained from the
known or controllable parameters such as the density of the ini-
tial sensor distribution, the local PFA , and the probability of
successful transmission through the MAC . Here, we briefly
discuss the estimation of .

As shown in Theorem 1, the ALMP weight is the spatial
signal shape under the Poisson regime. We consider an es-
timation method based on the collected sensor data. One simple
way is to utilize the Poisson assumption itself. Equation (10) re-
veals that is the local intensity variation of alarmed sensor
distribution over space. Hence, the weight can be estimated from
the alarmed sensors and their location directly. For example, we
can use a nonparametric intensity model

(23)

Assuming that is known, the maximum likelihood estimator
of for the model (23) is given by

(24)

Since any scaling of does not matter for obtaining ,
can be used as an estimate for the optimal weight

function. For this estimation method, however, several indepen-
dent measurements by sensors are required, and this method is
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useful only when is fairly large. We are currently investigating
more efficient methods to estimate the signal variation based
only on the binary sensor decisions and sensor locations. The
performance degradation due to an incorrectly assumed signal
shape is investigated in Section IV-B.

IV. NUMERICAL RESULTS

In this section, we present some simulation results. We used
the receiver operating characteristics (ROC) as the performance
criterion. The power of the proposed ALMP detector was eval-
uated via the analytic results in (12), (13) and by Monte Carlo
simulations. The PFA was also estimated to check the validity
of detector design in the Neyman–Pearson context. The power
of the proposed detector (Theorem 1) was compared with that of
the counting-based detector (22), which also has an asymptotic
size of but does not exploit the spatial information. Perfor-
mance degradation due to mismatched signal shapes was also
investigated.

A. Setup

We considered a two-dimensional (2-D) space that is cir-
cular with unit radius. The spatial signal shape was the sym-
metric exponential given by

(25)

with a decay rate . The average number of sensors in
was chosen to be 1000. For the local sensor function, we used
the additive Gaussian noise model and the UMP detector with
several local sizes (see Section II-A).

For the simulation of power and PFA, 10 000 Monte Carlo
runs were executed. For each run, the following procedures were
performed. The locations of the sensors were randomly gener-
ated according to a homogeneous Poisson process with the given
mean intensity. For each sensor, we implemented the detector
(6) for the AWGN model with noise variance . Global de-
cision statistics are given by (15) for the ALMP detector and by
(19) for the counting-based detector. The global thresholds for
both detectors were determined via the Gaussian limit distribu-
tion. Throughout the simulations, the probability of successful
data collection from each sensor was set to . The ini-
tial homogeneous density and the local PFA were assumed
to be known and the true values were used for the simulation.

B. Receiver Operating Characteristics

Fig. 4 shows the analytic upper bound on the power versus
the number of sensors for global size 0.1. It also depicts the ex-
pected behavior that if the signal strength decreases, we need
more sensors to achieve the same performance. Fig. 5 shows the
analytic bound and simulated power with respect to the PFA.
For the simulation curve, the actual PFA was used rather than
the designed size. As shown in the figure, the power of ALMP
detector achieves the asymptotic upper bound with a network
size of 1000. Notice that the simulated power is slightly larger
than the bound. This is because the Gaussian power function

is convex in the range and larger than the linear

Fig. 4. Upper bound on power versus average number of sensors (� = 3).

Fig. 5. ROC—Analytic and simulation curves (� = 3).

approximation at . However, the figure shows that the dif-
ference is negligible and that the linear modeling (10) is valid
in this range of .

One important feature of the proposed detector is that the test
statistic has a Gaussian limit distribution and the global
threshold is based on it. Fig. 6 shows the actual PFA obtained
by simulation versus the designed size for the additive Gaussian
noise model with local size 0.1 and verifies the convergence in
distribution of the test statistic with a network size of 1000 sen-
sors. As shown, the actual PFAs closely follow the design size.
Notice that the actual PFA of the ALMP detectors for decay rate

deviates more than that for the case of , whereas
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Fig. 6. Actual PFA versus the designed size.

Fig. 7. ROC with different local sizes (� = 0:5).

the deviations are almost the same for the counting-based de-
tector. This is because the test statistic for the ALMP
detector is the sum of local decisions weighted by the spatial
signal shape while the weight is uniform over the space for the
counting-based detector. For the exponential with a large decay
rate in (25), the sensor decisions around the origin dominate
the overall distribution. Hence, the distribution is concentrated
around the mean and deviates more from the Gaussian. This ef-
fect is more severe with a large decay rate .

Fig. 7 shows the ROC of the ALMP detector using different
local thresholds for a single sensor. The additive Gaussian input
model was used and the average number of sensors in was

Fig. 8. ROC—Additive Gaussian sensor model. Solid line—ALMP detector.
Dashed line—counting-based detector (� = 6).

Fig. 9. ROC—Additive Gaussian sensor model. Solid line—ALMP detector.
Dashed line—counting-based detector (� = 3).

kept the same at 1000 for all four cases in the figure. As shown,
the global power changes with the local size of each sensor and
the maximum is achieved between the local sizes of 0.2 and 0.3,
as predicted in Section III-B

Figs. 8 and 9 show the ROCs of the proposed ALMP and
counting-based detector for the additive Gaussian sensor model
with local size 0.1. Fig. 8 shows the case where the spatial
signal changes quickly within the region . The ALMP detector
exploits spatial information and performs significantly better
than the counting-based approach. Fig. 9 shows the ROCs for
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a smaller decay rate. As the decay rate becomes small or the
signal becomes more uniform over the space, the performance
gain by utilizing the spatial information becomes less signifi-
cant. The meaning of asymptotic local optimality is evident in
Fig. 9. In this case, we have a larger overall power in the space
than the cases in Fig. 8 since the signal decays slowly over the
space with the same peak at the origin. Since the peak value of

in (25) is one and the variance for sensor input noise is
chosen to be one, the maximum signal-to-noise ratio (SNR) for
a sensor located at the origin is 0 dB when the amplitude pa-
rameter is one in the figure. Even though the SNR of 0 dB is
very small for a single sensor, we have a large number of obser-
vations for the entire sensor field. (The average number is 1000
sensors.) Hence, the global power for already reaches
almost unity for both the ALMP and counting-based detector,
and the comparison above is less meaningful in this case.
However, the performance within the local neighborhood of the
null hypothesis is clearly distinguishable in all the figures.

Up to now, the true signal shape was used to obtain the ROC
of ALMP detectors. Fig. 10(a) shows the ROC of the proposed
detector with mismatched signal shapes. The true signal shape
of POI was the symmetric exponential with . We used two
mismatched shapes as the weighting function to construct the
central sequence. First, we considered the symmetric exponen-
tial with a different decay rate . As expected, the
proposed detector with the mismatched shape performs worse
than the true ALMP detector. However, for the case of
the performance almost approaches the ALMP detector since

is quite similar to the original shape. Therefore, we fur-
ther approximated the signal shape by a step function

otherwise
(26)

where was determined such that the spatial "power"
covers 90% of that of the original signal, i.e.,

. In this case, even
though the degradation from the true ALMP becomes larger, it
still shows good performance compared with the true ALMP
detector. It is seen that rough knowledge of the signal shape
is enough to get most of the advantage of the ALMP detector.
Fig. 10(b) shows the ROC of the ALMP detector using the same
signal shape but with mismatched centers. The same parameters
were used as Fig. 10(a) for the true signal. The displacements
of the center correspond to the positions of 80%, 60%, and 40%
from the amplitude of the true center. As shown, even with a
rough estimate of the center, performance degradation is not
severe compared with the perfectly matched case. Finally, the
effect of inaccurate sensor locations was investigated. Fig. 10(c)
shows the performance with the perturbed sensor locations.
The same signal shape with was used for all ALMP
detectors, but the perturbed locations of the sensors were used
at the fusion center, i.e., , where the pertur-
bation was generated independently for each sensor and
was Gaussian distributed with standard deviations 1%, 5%, and
10% of the radius of the total space. As shown by the figure,
the ALMP detector is robust with respect to the sensor location
errors and a rough estimate of the sensor location is enough.

Fig. 10. ROC with mismatched signal shapes. (a) Mismatched rate. (b)
Mismatched center. (c) Perturbed sensor location (� = 0:27, � = 0:75).

V. CONCLUSION

We considered a global detection problem based on (in-
accurate) binary decisions from local threshold sensors. The
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local "alarm" probability is described by a generic function
, where is the local threshold, is the known

underlying signal shape, and is the unknown amplitude. By
assuming a homogeneous Poisson distribution of the sensors,
we mapped the global detection problem to one of detecting
Poisson processes with different intensities. Under a small
signal strength assumption, asymptotically (in the number of
sensors in a fixed area) locally most powerful (ALMP) detector
was derived using LAN. It was shown that the conditions for
applying LAN lead to reasonable restrictions on the underlying
spatial signal. The ALMP fusion rule is a threshold detector
for the weighted sum of local decisions, where the weight is
proportional to the signal strength. The ALMP detector re-
quires knowledge of the sensor locations, the signal shape, and
a parameter which is the product of the local detector function

, the MAC success probability, and the average density
of the sensor locations. We have also shown (Theorem 3) how
to optimize the local threshold to maximize the global power
function. The asymptotic local optimality of the counting-based
detector was established for the case of constant spatial signals.
Numerical examples were provided to verify the theoretical
results. Several of these examples also demonstrate that the pro-
posed detector is robust under conditions of signal mismatch,
including wrong signal shape, translated signal shape, and
location calibration errors. Efficient estimators of , or its
parameters, based on the binary sensor decisions, is currently
under investigation.

APPENDIX I
LOCAL ASYMPTOTIC NORMALITY (LAN) FOR

THE MODEL IN SECTION II

A. Review of Poisson Processes

The Poisson process in a metric space with a -field
is expressed in a simple manner by a counting measure notation
as [9]

(27)

where ’s are random points in and

(28)

The Poisson process has the following properties.

i) For every , is a Poisson random variable
with mean .

ii) For every finite collection of disjoint sets
, the random variables

are independent.
Here, is called the intensity measure and its density4 ,
i.e., , is called the (local) intensity. We define
the stochastic integral for a given function as [7]

(29)

4For convenience, we assume that �(�) is differentiable.

The probability distribution of the Poisson process is deter-
mined by the local intensity. For the case of a parametric family
of intensities such as (10), the probability distribution is also pa-
rameterized by the same parameter and given by [10]

(30)

The likelihood ratio between two distributions and is
given by [7]

(31)

B. Construction of a Sequence of Statistical Models

We construct a sequence of statistical models
, where is the measur-

able space of all possible realizations of the Poisson process
of the alarmed sensors on space , and is the corre-

sponding family of probability distributions. Let be
the local intensity of the Poisson process . Then, the family

of probability distributions is
given by (30). We are interested in the asymptotic scenario
where the number of sensors deployed over a finite area goes
to infinity. The model of increasing sensors in a finite area
is described by increasing the initial intensity of sensor
deployment.

Model 1 (Finite Area and Infinite Sensor Model): We dis-
tribute sensors over space according to a homogeneous
Poisson process with intensity independently for each

. We set

such that for all (32)

and choose the local intensity of initial sensor distribution over
the space as

(33)

Then, we collect the local decision of each sensor and observe
the realization of the alarmed sensor distribution. For each

, the local intensity of is given, using (10) and (11),
by

(34)

where

(35)

and the sequence of probability distributions is
given, using (30), by

(36)
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The LAN property of distributions of Poisson processes has
been investigated by several authors [6]–[8] who derived the
conditions in terms of the local intensity for LAN. However, the
authors considered a sequence of models where the observation
area goes to infinity for a fixed local intensity for
all , which is different from Model 1. We derive new conditions
in terms of the spatial signal shape for the LAN property of the
model with increasing sensors in a finite area.

Theorem 3: For Model 1, suppose that satisfies the fol-
lowing conditions

C.1) , ;
C.2) ;
C.3) .

Then, the statistical model of the alarmed
sensor distribution is LAN at , i.e., for every

(37)

where the central sequence and normalizing sequence
are given by

(38)

(39)

and .
Proof: See Appendix II.

Here, the integration with random point measure in (38) is
defined in (29). Condition C.1) requires that the single sensor
power function must be a nondecreasing function at the
origin for a given and that be non-negative; C.2)
is satisfied by any bounded , and C.3) says that is not
identically zero over the sensor field. The conditions C.1)–C.3)
are general enough to include most interesting cases. Examples
of allowed 2-D signal shapes for any region with a finite area
include constant or , a step function, Gaussian, or ex-
ponentially decaying signal (indeed any bounded non-negative
function).

APPENDIX II
PROOFS

Lemma 1: Let be the sequence of Poisson processes
(or corresponding statistical models) with probability distri-
bution induced by the intensity

measure , . Let the condi-
tions B.1)–B.3) below be satisfied. Then, the statistical model

is LAN at with central sequence
and normalizing sequence defined in (38) and (39),
respectively.

B.1) All intensity measures ,
are equivalent or mutually absolutely

continuous for all and for all
. We define

B.2) The function is con-
tinuously differentiable with respect to at . We de-
fine

Then, the quantity

(40)

is positive ( ) at and

as (41)

B.3)

(42)

and for every , we have (43), shown at the
bottom of the page.

Proof: The proof can be found in [6], [7], and [31].
Proof of Theorem 3: Since

for Model 1 and , by the condition C.1), the
family of intensity measures are equivalent for

and all . Hence, B.1) is satisfied, and is well
defined, and its derivative is given by

and at

(44)

(43)
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since

for all

By C.2) and C.3)

for all

and . Hence, B.2) is satisfied.
Define

(45)

Now, check (42).

Since , , and

We have

as

Hence, the Lindeberg condition (42) is satisfied.
For given

as

where . Here, we used the fact that
defined in (46) is monotone increasing for .

for any (46)

Hence, B.3) is satisfied.
Proof of Theorem 1:

(47)

(48)

Here, we used the fact that is a scaled version of
( , ). The last step is by the definition of
stochastic integral. The ALMP detector is obtained by the score
test [4].

Proof of Theorem 2: By Theorem 1, the asymptotic local
upper bound for the global power is given by

Since is a monotone decreasing function, the maximum
upper bound for a fixed is achieved by maximizing for
a given . Since is given, using (35), by

(49)

the theorem follows.
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