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Abstract—The problem of sensor configuration for the detection
of correlated random fields using large sensor arrays is considered.
Using error exponents that characterize the asymptotic behavior of
the optimal detector, the detection performance of different sensor
configurations is analyzed and compared. The dependence of the
optimal configuration on parameters such as sensor signal-to-noise
ratio (SNR), field correlation, etc., is examined, yielding insights
into the most effective choices for sensor selection in various oper-
ating conditions. Simulation results validate the analysis based on
asymptotic results for finite sample cases.

Index Terms—Correlated signal, error exponent, Gauss–
Markov field, Neyman–Pearson detection, optimal sampling,
sensor configuration.

I. INTRODUCTION

I N this paper, we consider optimal sensor configuration or
selection for densely deployed sensor networks for the de-

tection of correlated random fields. An example in which the
problem of such sensor selection arises is Sensor Network with
Mobile Access (SENMA), where a mobile interrogator collects
sensor data controlling sensor transmissions in the reachback
channel. Due to limitations of sensor batteries, one of the main
constraints for such a sensor network is energy efficiency. In the
context of the considered detection problem, this implies that
one should minimize the required amount of sensor data by se-
lecting and activating sensors judiciously for a desired detection
performance to maximize the lifetime of the network, since the
number of activated sensors is directly related to the energy con-
sumption of the entire network.
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To simplify the problem for analysis and get insights into
optimal sensor configuration, we focus on a 1-D space and
examine how various parameters such as the field correlation,
signal-to-noise ratio (SNR), etc., affect the optimal sensor
configuration. We assume that each activated sensor takes a
measurement of the field at its location, and subsequently trans-
mits the data to the collector or fusion center, and the fusion
center makes the final decision. We adopt the Neyman–Pearson
formulation of fixing the detector size and minimizing the
miss probability. The miss probability ( , ; , SNR,
field correlation) is a function of the number and locations

of the activated sensors as well as detector
size , SNR, and field correlation. However, the exact miss
probability in the correlated signal case is not available in
general [1]. Our approach to this problem is based on the error
exponent. Usually, the miss probability decreases exponentially
as increases, and the error exponent is defined as the corre-
sponding decay rate

(1)

The error exponent is a good performance index since it gives
an estimate of the number of sensors required for a given de-
tection performance; larger decay rate implies that fewer sen-
sors are needed for a given miss probability. Hence, the optimal
configuration problem can be formulated to find the best sensor
locations (where data should be collected) maximizing the
error exponent for given , SNR, and field correlation when the
number of sensors is sufficiently large.

Based on our previous results on the behavior of the error
exponent for the detection of correlated random fields [2], we
investigate several strategies for sensor configuration for the de-
tection problem, and propose guidelines for the optimal con-
figuration for different operating regimes. (Introductory results
were presented in [3].) Specifically, we consider uniform con-
figuration, uniform configuration with random perturbation in
location, periodic clustering, and periodic configuration with ar-
bitrary sensor locations within a period. We show that the op-
timal configuration is a function of the SNR of the observations
and the field correlation. For uniform configuration, the optimal
strategy is to cover the entire signal field with the activated sen-
sors for . For , on the other hand, there ex-
ists an optimal spacing between the activated sensors. We also
derive the error exponents of periodic clustering and arbitrary
periodic configurations in closed form by extending our pre-
vious results. These new expressions for error exponents reveal
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the advantages and disadvantages of clustering of sensor ob-
servations for different operating condition. We compared the
relative performance of the clustering to the uniform configu-
ration using the asymptotic relative efficiency. It is shown that
periodic clustering outperforms the uniform configuration de-
pending on the field correlation and SNR. Furthermore, there
exists an optimal cluster size for intermediate values of field cor-
relation. The closed-form error exponent obtained for the vector
state-space model explains the transitory error behavior for dif-
ferent sensor configurations as the field correlation changes. It
is seen that the optimal periodic configuration is either periodic
clustering or uniform configuration for highly correlated or al-
most independent signal fields. Monte Carlo simulations were
performed, and simulation results validate our analysis based on
asymptotic results in cases involving finitely many sensors.

A. Related Work

The detection of Gauss–Markov processes in Gaussian noise
has been widely investigated. See [4] and references therein.
There is also an extensive literature on the large deviations
approach to the detection of Gaussian processes [5]–[11]. In
particular, the works of Bahr and Bucklew [6], [7] are closest
to our results. Their work concerns the Bayesian detection of
Gaussian processes in which the threshold for the normalized
log-likelihood ratio (LLR) is fixed and the Gärtner–Ellis the-
orem and Toeplitz distribution theorem can be applied. Using
the Gärtner–Ellis theorem, they optimized the error exponent
numerically and showed that the optimal sampling depends on
SNR for a specific signal model. However, our work is based
on the Neyman–Pearson formulation with a fixed size, in which
the detection threshold varies with the number of samples and
the Gärtner–Ellis theorem is not directly applicable. Under the
Neyman–Pearson formulation, the error exponent is given by
the almost-sure limit of the Kullback–Leibler rate (or relative
entropy rate) [12]. Our work and extensions here are based
on the large deviations results in [2], where the closed-form
error exponent was derived for the Neyman–Pearson detection,
with a fixed size, of correlated Gaussian signals using the
innovations representation of the LLR [13]. The application
of the large deviations principle (LDP) to sensor networks
has been considered by other authors as well. Chamberland
and Veeravalli have also considered the detection of correlated
fields in large sensor networks under the formulation of LDP
and a fixed threshold for the LLR test focusing on detection
performance under power constraint [14].

B. Notation

The notation is standard. Vectors and matrices are written
in boldface with matrices in capitals. For a matrix ,
indicates the transpose, represents the element in the
th row and th column, and and represent

the determinant and trace of , respectively. We reserve
for the identity matrix of size (the subscript is included
only when necessary). is a block diagonal
matrix with as its diagonal blocks. For a random

vector , is the statistical expectation of . The notation
means that has the Gaussian distribution with

mean and covariance .

II. DATA MODEL

We consider the detection of a stochastic signal using
sensors deployed over 1-D space . We

assume that the underlying signal is correlated over space
and model it as the stationary solution of the stochastic differ-
ential equation

(2)

where the constants and are known, and the ini-
tial condition is given by . The input process

is a zero-mean unit-variance white Gaussian process, in-
dependent of both the initial state and sensor measurement
noises .

We assume that each activated sensor measures the field at
its location, and subsequently transmits the data to the fusion
center, where a final decision is made.1 The observation from
the activated sensor located at is described by
the following hypotheses:

(3)

where are independent and identically distributed (i.i.d.)
sensor measurement noises drawn from with a vari-
ance , and is the spatial signal sample of the underlying
signal taken by sensor , i.e., , as shown in Fig. 1.
The dynamics of signal samples at locations are given by

(4)

where is the distance between sensor and
, and the mean and variance of process noise are given by

, for all . Notice that
for . (A similar model was also derived

in [15].) From the stationarity, the SNR is given by

(5)

The hypotheses for the discrete model sampled by sensors
can be written in vector form as

(6)

1We will not focus on local quantization of the measurement at the sensor
level here, nor will we consider the transmission error to the fusion center. These
are important design issues that should be treated separately.
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Fig. 1. Signal and measurement model.

Fig. 2. Configurations for n sensor activations: (a) uniform configuration;
(b) uniform configuration with random perturbation; (c) periodic clustering;
and (d) arbitrary periodic configuration.

where , and
. The noise vector , and

with . Note that the
covariance matrix is not Toeplitz in general. Hence, has
the distribution and , where
and , under and , respectively.

III. SENSOR CONFIGURATION AND ERROR EXPONENT

In this section, we consider several sensor configurations, i.e.,
the design of in the space, and investigate
the corresponding detection performance of each via the error
exponent. We also present the closed-form error exponent for
several configuration cases by extending our previous results in
[2]. Specifically, we consider the uniform configuration, uni-
form configuration with random perturbation, clustering, and
periodic configuration with arbitrary locations within a spatial
period, as described in Fig. 2. We provide the optimal configura-
tion for the uniform configuration for the detection performance
and examine the benefits of other configurations. The error ex-
ponent for the uniform configuration with random perturbation
in sensor location is not obtained in the paper, and the perfor-
mance in this case is studied via simulations. However, it is pos-
sible to derive the error exponent when the sensor spacings are
i.i.d. random variables using the generalized strong law of large
numbers (SLLN).

A. Uniform Configuration

The error exponent of the Neyman–Pearson detection
of the hypotheses (3) is given by the asymptotic Kull-
back–Leibler rate defined as the almost-sure limit of

as under ,
where and are the joint probability density of

under and , respectively.
In the case of uniformly located sensors with spacing be-

tween two neighboring sensors, the signal dynamics are given
by a linear invariant state-space model (4) with

and for all (7)

and the covariance matrix of the signal vector is a Toeplitz
matrix of which the asymptotic eigenvalue distribution is known
[16], [17]. Note that and correspond to the inde-
pendent and the perfectly correlated sample cases, respectively.

In this case, the hypotheses are given by (3), (4), and (7), and
the results in [2] apply directly. The error exponent is given by
the following theorem from [2].

Theorem 1 (Error Exponent for the Uniform Case [2]): The
error exponent for the Neyman–Pearson detection of the hy-
potheses (3), (4), (7) with a fixed size is given by

(8)

independently of the value of , where and are the
steady-state variances of the innovations process of under

and , respectively. Specifically, and are given by

(9)

and

(10)

where

(11)
Here, is the steady-state error variance of the minimum mean-
square error (MMSE) estimator for the signal .

Here, we note that the error exponent for the miss probability
with a fixed size does not depend on the value of the size.
Thus, the error exponent depends only on sensor location and
SNR. It is shown in [2] that the error exponent is monotone
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Fig. 3. Optimal spacing between sensors for infinite signal field (SNR < 1,
A = 1).

decreasing as the correlation coefficient increases for a given
SNR for , whereas for there exists a non-
zero correlation value that maximizes , and is given by
the solution of the following equation:

(12)

Further, converges to one as SNR approaches zero. It is also
shown in [2] that the error exponent increases monotonically
as SNR increases for a given correlation coefficient ,
and at high SNR the error exponent increases as a function
of SNR as

(13)

The key connection between the sensor configuration and de-
tector performance is given by the correlation coefficient

. First, consider . In this case, the detection per-
formance degrades as the sample correlation increases (i.e.,

), and the sample correlation increases as the sensor spacing
decreases for a given field diffusion rate in (2). Hence, when
the support of the signal field is finite and we have sensors to
activate in the field, the optimal uniform configuration is to dis-
tribute the activated sensors to cover the entire support of the
signal field, which makes the observations least correlated; lo-
calizing all the activated sensors in a subregion of the stationary
random signal field is not optimal. For the detection of weak
signals , on the other hand, the optimal spacing
for an infinite (in size) signal field is given by

(14)

where is given by the solution of (12). The optimal spacing
is finite for any SNR strictly less than one. Fig. 3 shows the

optimal spacing as a function of SNR is shown for .

For a finite-duration signal field with activated sensors,
is still optimal among the class of uniform configurations

if the sensor coverage is less than the spatial field duration ,
i.e., . In this case, the sensor field does not need to
cover the entire signal field. If , however, may
not be the optimal spacing any more. The error exponent de-
creases when the spacing deviates from the optimal spacing

. Hence, activating sensors fewer than with
spacing larger than always yields a worse performance than

sensors with spacing . However, this may not be the case
for activating more sensors than (up to ) with a reduced
spacing from . Although the error exponent decreases by re-
ducing the spacing, i.e., per-sensor performance degrades, more
sensors are activated over the signal field. Therefore, better per-
formance is possible for the second case since the product of the
error exponent and the number of samples determines the miss
probability.

A similar situation also occurs at for a finite-du-
ration signal field. In this case, the error exponent increases
monotonically as the correlation decreases, as mentioned ear-
lier. Hence, by spreading the activated sensors with a reduced
number of activated sensors in the finite-duration signal field,
sensor observations become less correlated and the slope of
error decay per sensor sample becomes larger at a cost of re-
ducing the number of observations. However, the increase in
the error exponent is not sufficient to compensate for the loss
in the number of sensors in the field. This is because the error
exponent is a concave monotone increasing function of at
high SNR, and hence for . The mono-
tonicity is simply seen from the monotonicity of as a function
of and that of as a function . The concavity is also easily
proved using the concavity of as a function of , i.e.,

The first inequality is because is a monotone decreasing func-
tion of and
since , and the second inequality is by the
concavity of as a function of at high SNR. The error ex-
ponent as a function of at 10-dB SNR is shown in Fig. 4.
Hence, when the maximum number of available sensors in a fi-
nite-duration signal field case is , the optimal configuration is
to activate all sensors covering the entire field.

Another interesting fact about the finite-duration signal field
is the asymptotic behavior when the number of sensors increases
without bound. In this case, the correlation coefficient converges
to one, i.e.,

as (15)

It is shown in [2] that the error probability does not decay expo-
nentially when , but decays with polynomial order
for any finite as . The exception is the singular case
where , i.e., the signal is a white process. Therefore, for
the detection of stationary correlated fields, it is a better strategy
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Fig. 4. Error exponent versus � (SNR = 10 dB).

to cover a larger area as long as the signal field extends there than
to localize activated sensors more densely in a subregion.

B. Periodic Clustering

The uniform configuration for a finite-duration signal field
reveals that we have a benefit at high SNR by making sensor
spacing large to obtain less correlated observations, but acti-
vating fewer sensors results in a bigger loss than the gain from
samples’ being less correlated. This leads to our next configu-
ration: periodic clustering, as shown in Fig. 2(c), aiming at the
benefits from both correlation and the number of activated sen-
sors. In this configuration, we activate sensors very close in
location, and repeat this multiple activation periodically over the
signal field. In this way, the spacing between clusters becomes
larger than that of the uniform configuration while the number
of activated sensors is preserved.

To simplify the analysis, we assume that the sensors of a
cluster are located at the same position. With the total number
of activated sensors , the observation vector

under is given by

(16)

where is the Kronecker product, , and
with . ( is the sensor

spacing for the uniform configuration for sensors in .) The
covariance matrix of the observation vector is given by

under
under

(17)

where . The signal covariance matrix has a
block Toeplitz form due to the perfect correlation of signal sam-
ples within a cluster. in (17) is a positive-semidefinite
Toeplitz matrix of which the th off-diagonal entries are given
by . For any and finite , is an abso-
lutely summable sequence; the eigenvalues of are bounded

Fig. 5. Asymptotic relative efficiency versus diffusion rate (M = 2, � =
1=99, SNR = �5, 0, 5, 10, 20 dB).

from above and below [17]. Using the convergence of the eigen-
values of and the properties of the Kronecker product, the
error exponent for periodic clustering is obtained and given by
the following proposition.

Proposition 1 (Periodic Clustering): For the Neyman–
Pearson detector for the hypotheses (6) with level
and periodically clustered sensor configuration, the error expo-
nent of the miss probability is given by

(18)

where is the error exponent in Theorem 1 for
uniform configuration with spacing and for each
sensor.

Proof: See the Appendix.
It is shown in the proof that the optimal detection for periodic

clustering comprises two steps. We first take an average of the
observations within each cluster and then apply optimal detec-
tion for a single sample at each location to the ensemble of
average values. Intuitively, it is reasonable to average the obser-
vations within a cluster since the signal component is aligned
and the noise is random. By averaging, the magnitude of the
signal component increases by times with the increase in the
accumulated noise power by the same factor. Thus, the SNR
within a cluster increases by the factor . This is shown in the
form of the error exponent (18) for periodic clustering.

The error exponent (18) reveals the advantages and disadvan-
tages of periodic clustering over a uniform configuration cov-
ering the same signal field. First, clustering provides two bene-
fits. One is that the correlation between clusters is reduced for
the same diffusion rate by making the spacing larger, and the
error decay per cluster increases for high SNR. Second, the SNR
for each cluster increases by the factor . However, the effec-
tive number of signal samples is also reduced by the same factor
as compared with the uniform configuration. The performance
of clustering is determined by the dominating factor depending
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Fig. 6. ~K versus M (SNR = 10 dB): (a) A = 0:1; (b) A = 1; and (c) A = 10.

Fig. 7. ~K versus M (SNR = �3 dB): (a) A = 0:1; (b) A = 1; and (c) A = 10.

on the diffusion rate of the underlying signal and the SNR of
the observations.

To get insight into the relative performance, in Fig. 5, we plot
the asymptotic relative efficiency (ARE) defined as

(19)

for and several different SNR values. The ARE is the
ratio of the required number of samples of one scheme to that
of the other when both have the same detection performance,
and is a good measure of the relative performance between two
detection schemes in the large sample regime. As shown in the
figure, it is seen that clustering outperforms the uniform con-
figuration for a wide range of the diffusion rate at low SNR
( 5 and 0 dB), whereas at high SNR ( 5, 10,
20 dB) the clustering has worse performance than the uniform
configuration when the field is weakly correlated. Notice that
when the field is strongly correlated, the clustering yields better
performance than the uniform configuration even at high SNR,
but the performance difference between the clustering and the
uniform configuration is not significant.

Now we consider different values of . Fig. 6 shows the per-
sensor error exponent for different diffusion rates at 10-dB
SNR. The cluster size is chosen as to cover
a field with length one with total 100 sensors. For the highly
correlated field , it is observed that the reduced cor-
relation between signal samples is the dominant factor and the
clustering gives better performance than the uniform

configuration (i.e., ). This is consistent to the result in [2]
that the gain in the error exponent due to reducing the sample
correlation is large in the strong correlation region (i.e., near

). For the highly independent signal field , on
the other hand, the clustering yields worse performance than the
uniform configuration . In this case, the sample corre-
lation between the activated sensors is already weak, and the in-
crease in the error exponent due to increased spacing is insignif-
icant in the region around . Hence, the benefit of clustering
results mostly from the increase in SNR. By (13), however, the
rate of increase in the error exponent due to the increased SNR
is at high SNR, which does not compensate for the
loss in the number of effective samples by the factor . For
the signal field with intermediate correlation, there is a tradeoff
between the gain and loss of clustering, and there exists an op-
timal cluster size as shown in Fig. 6(b).

Fig. 7 shows for periodic clustering for 3 dB-SNR with
other parameters the same as those in the high SNR case. It is
seen that periodic clustering outperforms the uniform configu-
ration in all considered correlation values at 3-dB SNR, and
the SNR is the dominant factor in the detector performance at
low SNR.

Clustering also provides an intuitive explanation for the poly-
nomial behavior of the asymptotic error decay rate for the infi-
nite density model (15) that we considered in Section III-A. We
can view an increase in the number of sensors in a finite-size
signal field as increasing the cluster size with a fixed number

of clusters. As increases with a fixed , SNR per cluster
increases linearly with , and will be in the high SNR regime
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eventually. At high SNR, the error exponent increases at the rate
of (13). Hence, the asymptotic behavior of
the overall miss probability is given by

(20)
for sufficiently large . It is clear that in highly correlated cases
the decay in the error probability with an increasing number of
samples is mainly due to the noise averaging effect rather than
the effect of the innovations contained in the observations.

C. Arbitrary Periodic Configuration

It is observed in the previous section that periodic clustering
outperforms the uniform configuration depending on the field
correlation. However, periodic clustering is limited since all the
sensors within a spatial period are activated on the same loca-
tion. Considering the periodic structure we now generalize the
locations of the scheduled sensors within a period. We first pro-
vide a closed-form expression for the error exponent for the
Neyman–Pearson detection of stationary vector Gauss–Markov
processes using noisy observations. Using the closed-form error
exponent, we then examine the optimal periodic configuration.

We again consider scheduling sensors over with
sensors within a period, and denote the relative distance of
sensors within a period as

Hence, the interval of a spatial period is .
Define the signal and observation vectors for period as

(21)

(22)

where and . The hy-
potheses (3) can be rewritten in vector form as

(23)

where the measurement noise independent
over , and the signal vector satisfies the vector state-space
model

(24)

where the process noise . Specifi-
cally, the feedback and input matrices, and , are given from
the scalar state-space model (4) as

...

...
. . .

(25)

and

Notice that , , and do not vary with due to the peri-
odicity2 and only the last column of is nonzero due to the
Markov property of the scalar process . The single nonzero
eigenvalue of corresponding to the last column is simply
given by so that for arbitrary sensor lo-
cations within a period for any diffusion rate . Notice that
the eigenvalue is the same as the correlation coefficient with
sampling distance , the period of the spatial interval. The ini-
tial condition for the vector model is given by

(26)

where , . The initial
covariance matrix is derived from the scalar initial condition

, and satisfies the following Lyapunov equation:

(27)

Thus, the vector signal sequence is a stationary process
although the scalar process is not in general for the arbitrary
periodic configuration.

Generalizing the results in [2], we provide a closed-form ex-
pression for the error exponent of the Neyman–Pearson detec-
tion of stationary vector processes with noisy observations in
the following proposition.

Proposition 2 (Arbitrary Periodic Configuration): For the
Neyman–Pearson detection for the hypotheses (23) and (24)
with level (i.e., ), the error exponent of the
miss probability (per a vector observation) is given by

(28)

independently of the value of . The steady-state covariance
matrices and of the innovation process calculated under

and , respectively, are given by

(29)

where is the unique stabilizing solution of the discrete-time
Riccati equation

(30)

and

(31)

2We have a “time”-invariant vector state-space model (24) from a “time”-
varying scalar state-space model (4). This makes it possible to derive the error
exponent for the arbitrary periodic configuration.
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Fig. 8. K versus � (M = 2, � = 0:02, SNR = 10 dB): (a) A = 1; (b) A = 8; (c) A = 15; and (d) A = 100.

where is the unique positive-semidefinite solution of the fol-
lowing Lyapunov equation:

(32)

and .
Proof: See the Appendix.

Using (28), we now examine the large sample performance
for the detection of correlated fields using sensors with arbitrary
periodic configuration and explain the transitory behavior of op-
timal configuration as the field correlation changes. First, we
consider the case of , which provides insights into the
detection problem. In this case, we have the freedom to schedule
one intermediate sensor at an arbitrary location within an in-
terval . Periodic clustering and uniform configuration are spe-
cial cases of this configuration with and ,
respectively. Fig. 8 shows the error exponent for different dif-
fusion rates at 10 dB. We observe an interesting be-
havior with regard to the diffusion rate. For the highly correlated

case , periodic clustering yields the best
performance and the uniform configuration provides the worst.
As the field correlation becomes weak , however, we
observe that a second lobe grows at the uniform configuration
point . The value of the second lobe becomes larger
than that of the clustering as the correlation becomes weaker

, and eventually the error exponent decreases mono-
tonically as the configuration deviates from uniform configura-
tion to periodic clustering. This behavior of the error exponent
clearly shows that the optimal configuration is dependent on the
field correlation. One should reduce the correlation between ob-
servations for highly correlated fields whereas the uniform con-
figuration is best for almost independent signal fields, which is
consistent with the results in the previous sections. Interestingly,
it is seen that the optimal configuration for at high SNR is
either clustering or the uniform configuration depending on the
field correlation; no configuration in-between is optimal! Fig. 9
shows the error exponent for at 3 dB. It is
seen that clustering is always the best strategy for all values of
the field correlation considered and the increase in the effective
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Fig. 9. K versus � (M = 2, � = 0:02, SNR = �3 dB): (a) A = 1 (b) A = 100 (c) A = 1000.

Fig. 10. K versus (x ; x ) (M = 3, � = 0:03, SNR = 10 dB): (a) A = 1; (b) A = 5; (c) A = 6; and (d) A = 9 (red: high value; blue: low value).

SNR due to noise averaging is the dominant factor in the detec-
tion performance at low SNR. It is also observed that the loca-
tion of the intermediate sensor is not important for the almost
independent field unless it is very close to the first
sensor within a period. This is intuitively obvious since the in-
termediate sensor provides an almost independent observation
(for which the location does not matter) as it separates from the

first and the noise averaging is not available between the inde-
pendent samples.

In the case of , the location of one sensor in a period
is fixed and we can choose the locations of the two
other sensors arbitrarily such that and

. Fig. 10 shows the error exponent as a function of
for at 10-dB SNR. Similar behavior to the case of
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Fig. 11. P versus M (jSj = 1, SNR = 10 dB): (a) A = 0:1; (b) A = 1; and (c) A = 10.

Fig. 12. P versus M (jX j = 1, SNR = �3 dB): (a) A = 0:1; (b) A = 1; and (c) A = 10.

is observed. In the highly correlated case ,
we see the maximal value of the error exponent at (0,0),
(0, ),( ,0), and , which all correspond to periodic
clustering. Hence, periodic clustering is the best among all
configurations. In this case, it is seen that uniform configu-
ration, i.e., or , is the
worst configuration. As the field correlation becomes weak,
however, the best configuration moves to uniform configuration
eventually, as seen in Fig. 10(d). Interestingly, it is observed
that placing two sensors clustered and one in the middle of the
spatial period is optimal for transitory values of field correlation
as shown in Fig. 10(b) and (c).

At low SNR, similar behavior to the case of is ob-
served, and the results confirm that periodic clustering gives the
best configuration for most values of field correlations at low
SNR.

IV. SIMULATIONS

In this section, we provide numerical results to verify
our analytic results presented in the previous sections.
Neyman–Pearson tests were used in all scenarios. The thresh-
olds were chosen so that the false alarm probability was fixed at

1 . Note that our analysis is based on the error exponent
that is the slope of the exponential error decay in large sample
scheme, and the miss probability is approximately given by

when the number of samples is large. Hence,
the largest error exponent would result in the smallest error
probability for a given number of observation samples in large
sample scheme. In the simulations, we obtained the actual miss

probability (or detection probability) to validate the analysis
based on the error exponent in finite sample cases. Only a
limited number of sensors are used, especially, in high SNR
cases. This is because the detection probabilities of all the
schemes are almost one and it is hard to see the performance
difference if a large number of sensors are used in high SNR
cases. We set the number of sensors as large as possible, as long
as there is a meaningful result. It is seen that, even in the cases
with very limited number of sensors , the simulation
results still match the behavior predicted by the analysis based
on the error exponent.

A. Uniform and Periodic Clustering Configuration

Fig. 11 shows the miss probability for different diffusion rates
at 10-dB SNR. The total number of sensors is fixed to ,
and the cluster size is chosen as . For the
highly correlated field , it is observed that the reduced
correlation between signal samples is the dominant factor and
clustering gives better performance than uniform con-
figuration (i.e., ). For the highly independent signal field

, on the other hand, clustering yields worse perfor-
mance than the uniform configuration. For the signal field with
intermediate correlation, there is a tradeoff between the gain
and loss of clustering, and there exists an optimal cluster size
as shown in Fig. 11(b). The simulation results match the theo-
retically predicted behavior shown in Fig. 6.

Fig. 12 shows the miss probability for different diffusion rates
at 3-dB SNR. The total number of sensors is fixed to ,
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Fig. 13. P versus � (M = 2, � = 0:02, SNR = 10 dB): (a) A = 1; (b) A = 15; (c) A = 30; and (d) A = 100.

and the cluster size is chosen as . It is seen
that periodic clustering outperforms uniform configuration in all
considered correlation values at 3-dB SNR, and the SNR is the
dominant factor in the detector performance at low SNR. The
simulation results here match the theoretical analysis shown in
Fig. 7.

B. Arbitrary Periodic Configuration

We now investigate the detection performance for arbitrary
periodic configuration. First, we consider the case of

in which we have the freedom to schedule one interme-
diate sensor at an arbitrary location within an interval

. Periodic clustering and uniform configuration are spe-
cial cases of this configuration with and ,
respectively.

Fig. 13 shows the detection probability as
a function of the intermediate sensor location at high SNR.
Here, sensors are used. The locations of six sensors are
fixed with a interval between adjacent ones, and the

remaining five sensors are located in each of the five intervals,
according to . For the highly correlated field , peri-
odic clustering gives the best performance while the
uniform configuration provides the worst. However, as the field
correlation becomes weak , we observe a second lobe
growing at the uniform configuration point . The
value of the second lobe becomes larger than that corresponding
to clustering as the correlation becomes weaker , and
eventually the detection probability decreases monotonically as
the configuration deviates from uniform configuration to peri-
odic clustering. This is consistent with the results using error
exponents in the previous sections, as shown in Fig. 8.

Fig. 14 shows the detection probability for at low
SNR. 101 sensors are used. The locations of the sensors
are set in a similar fashion as the setting in Fig. 13. It is seen
that clustering is always the best strategy for all values of field
correlation considered since the increase in the effective SNR
due to noise averaging is the dominant factor in the detection
performance at low SNR. It is also seen that the location of the
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Fig. 14. P versus � (M = 2, � = 0:02, SNR = �3 dB): (a) A = 1; (b) A = 100; and (c) A = 1000.

intermediate sensor is not important for the highly uncorrelated
field unless it is very close to the first sensor within
a period. This is consistent with the results using error expo-
nents in the previous sections, as shown in Fig. 14. Note that the
location of the intermediate sensor makes much less difference
in highly correlated fields than in highly uncorrelated
fields ( 100,1000).

Next, we consider the case of in which we have
freedom to schedule two intermediate sensors at an arbitrary
location within an interval . Fig. 15 shows the con-
tour and surface of the detection probability as a function of
the locations of the two intermediate sensors, with various field
correlations. The SNR is set to 10 dB. Similar to the analysis
of the error exponent in Section III, for the highly correlated
signal field , the best results are produced by periodic
clustering, and the worst results are from a uniform configura-
tion. As the field correlation becomes weak, the uniform config-
uration becomes the best scheme gradually. It is also seen that
placing two sensors clustered and a third one in the middle of
the spatial period is optimal for transitory values of signal field
correlation, as shown in Fig. 15(b).

C. Uniform Configuration With Random Perturbation

Finally, the uniform configuration with random perturbation
is studied. Eleven sensors are placed uniformly, at location

with an interval of . Random perturba-
tions are introduced to the 9 sensors in the middle, their loca-
tions are set to be , , where the ’s
are independent and uniformly distributed on . In
Fig. 16, is set to be 0.1 or 0.5, corresponding to random
perturbations being scaled by 10% or 50% of . The uniform
configuration and periodic clustering with are also
plotted. Both high SNR and low SNR cases are studied. It is
seen in Fig. 16 that the performance of the uniform configura-
tion with random perturbation is not much different from that
of the uniform configuration in the high SNR case, whereas it
is better than that of the uniform configuration in the low SNR
case. When the sensor field covers the same spatial length,
spatial perturbation makes some sensor spacing larger than
that of the uniform case and other spacing less than that of

the uniform case. When the SNR is high and the field cor-
relation is weak, it can be shown that the total sum of Kull-
back–Leibler information is approximately given by the sum
of per-sensor error exponent that is a monotone increasing
concave function of the sensor spacing as shown in Fig. 4.
In this case, the increase of the per-sensor error exponent due
to the enlarged spacing cannot compensate for the error expo-
nent decrease due to the reduced sensor spacing, and thus the
perturbation yields worse performance. When the SNR is low,
however, the perturbation provides clustered sensors and this
clustering provides a benefit to the performance, as shown in
Fig. 16(b).

V. CONCLUSION

We have considered energy-efficient sensor selection for
large sensor networks deployed to detect correlated random
fields. Using our previous results on the error exponent in
Neyman–Pearson detection, we have analyzed and compared
the detection capabilities of different sensor configuration
strategies in the large sample regime. The optimal configuration
is a function of the field correlation and the SNR of sensor
observations. For the uniform configuration, the activated sen-
sors should be maximally separated to cover the entire signal
field at high SNR, whereas at low SNR there exists an optimal
spacing between the activated sensors. We have also provided
the error exponents of periodic clustering and arbitrary periodic
configurations. Depending on the field correlation and SNR,
periodic clustering may outperform the uniform configuration.
Furthermore, there exists an optimal cluster size for interme-
diate values of correlation. The closed-form error exponent
obtained for the vector state-space model explains the transitory
behavior of the optimal scheme from periodic clustering to the
uniform configuration as the field correlation changes. Simu-
lations confirm the validity of our analysis using asymptotic
results for finite sample sizes. Throughout the paper, we have
assumed that sensors have already been deployed over the field
and considered the activation for sensing and transmission from
the selected sensors. The results here are also applicable to
sensor placement problem where sensors are to be deployed
over a signal field for a detection application.
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Fig. 15. P versus � and � (M = 3, � = 0:03, SNR = 10 dB): (a) A = 1; (b) A = 16; and (c) A = 50.
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Fig. 16. P versus correlation coefficient a: (a) SNR = 10 dB and (b) SNR = �6 dB.

APPENDIX

A. Proof of Proposition 1

For two distributions and
, the error exponent is given by

the almost-sure limit of the Kullback–Leibler rate

(33)

under [12]. Here, and denote the probability den-
sity of under and , respectively.

Let the eigendecomposition of be
, where and

. Then, by the properties of the Kronecker product
we have , where

, (Here,
we have nonzero elements and zero elements.)
and , . Here,

and are the th and th column vectors of and ,
respectively. The covariance matrices under and are
given by and Thus,
we have . Using
the asymptotic distribution of the eigenvalues of a Toeplitz
matrix [16], [17], we have

(34)
where is the spectrum of the signal sample at locations

which has finite lower and upper bounds.
For the second term in the right-hand side of (33), we have

and

where

The limiting behavior of is also known
and is given by

(35)
where the limit is in the almost-sure sense convergence under

, provided that is continuous and strictly positive [18].
Combining (33), (34), and (35) gives

(36)
and

is the error exponent in Theorem 1 in the spectral domain.
This concludes the proof. Note that the error exponent is
times that of the uniform configuration with the signal power
increased -fold.
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B. Comments on Theorem 1 and Proposition 1

Since the uniform configuration and periodic clustering are
special cases of arbitrary periodic configuration, Theorem 1 and
Proposition 1 can also be obtained by applying Proposition 2.
The uniform case is straightforward. In case of periodic clus-
tering, , ( is a matrix with all zero elements),

is a lower triangular matrix with all diagonal and lower diag-
onal elements being one, and .
Solving the Riccati (30) and Lyapunov (32) yields

where is a unitary matrix of which first column is
, is the solution of the scalar Ric-

cati equation with signal power , and is the solution
of the scalar Lyapunov equation corresponding to , i.e.,

. Hence,
we have

From (28), the per-cluster error exponent is given by

This is the error exponent in (8) with the signal power given by
and needs to be scaled by for the per-sensor error

exponent.

C. Proof of Proposition 2

The proof is similar to that in [2], where the scalar observation
process is considered. Here, we extend to the vector observation
process case. The error exponent is given by the almost-sure
limit of the normalized LLR under , where

. The LLR is given by

(37)

Under , the elements of are i.i.d. zero-mean Gaussian with
variance . We have

(38)

So

(39)

since , almost surely
(a.s.) under , as , by SLLN.

Now, let us focus on . Define
, where . Since

(40)

and , we have

(41)

(42)

where , which is also known as the innovation
with covariance matrix . Hence

(43)

The second term on the right-hand side of (44) is not random,
and we have

(44)

by the Cesáro mean theorem, since is a finite-dimension
matrix, and , where means

is positive semidefinite. is given by

(45)

where is the stead-state error covariance of the one-step pre-
dictor for the signal and is given by the unique stabilizing
solution of the distrete-time Riccati equation

(46)

such that is stable (the existence of the solution is guar-
anteed since is stable and ; see [2]),
and is the stead-state Kalman prediction gain.

Consider the third term of the right-hand side (RHS) of (43).
The innovation process is a sequence of random vectors, and
given by a linear combination of , i.e.,

(47)

Here, is the Kalman predition gain,
is the error covariance at time , and is

the LMMSE prediction of given . Since the Kalman filter
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converges asymptotically to the time-invariant recursive Wiener
filter for a stable , we have asymptotically

(48)
Under , the sequence is i.i.d. Gaussian, and the innova-
tions sequence is the output of a stable recursive filter driven
by . Since ergodicity holds for any vector stationary Gaussian
process with continuous spectral distribution function [3], it is
easy to see that the sequence is ergodic. By the ergodic the-
orem, converges to its true expectation given
by

(49)

and is given by

(50)
Define

(51)

Since is stable, the series convergences absolutely
to a finite matrix, which is given by the following Lyapunov
equation [2]:

(52)

Now, the third term on the RHS of (43) can be rewritten as

(53)

It is known that converges to exponentially [2]. Hence,
we have for some and by ap-
plying the matrix inversion lemma

(54)

(55)

(56)

where and are some constants. Substituting this into
(53) yields

(57)

The first term converges to , and the second
term converges to zero since converges to a
matrix with a finite elements. Combining (39), (43) and (44)
with the above, we have
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