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Abstract— In this paper, the Gaussian relay channel with linear
time-invariant relay filtering is considered. Based on spectral
theory for stationary processes, the maximum achievable rate of
this subclass of Gaussian relay operation is obtained in finite-
letter characterization. The maximum rate of this subclass can
be achieved by dividing the overall frequency band (or the
overall time interval alternatively) into at most eight segments
and by making the relay behave as an instantaneous amplify-and-
forward relay at each segment. Numerical results are provided
to evaluate the performance of LTI relaying, and the numerical
results show that LTI relaying does not increase the rate
considerably over the instantaneous amplify-and-forward relay
in flat-fading Gaussian relay channels.

I. I NTRODUCTION

The relay channel problem is one of the classical problems
in information theory, and still the capacity of this three node
network is not exactly known. However, many ingenious cod-
ing strategies including decode-and-forward, compress-and-
forward, etc. beyond the simple instantaneous amplify-and-
forward (IAF) scheme have been developed [1], [2]. Recently,
El Gamal et al. proposed a more advanced linear scheme
for relay channels based on linear processing at the relay
to compromise the complexity and performance between the
complicated coding strategies and IAF [3], and showed that
the scheme could perform well in certain cases by giving an
example. Although the capacity for frequency-division linear
relaying was obtained in their work, the general linear relay
case was not explored fully, and the capacity for the general
linear relay channel was not obtained; the general linear
problem is a sequence of non-convex optimization problems
and seemingly intractable [3] except the simple case of one-
tap IAF [4]. To circumvent such difficulty, in [5] we consid-
ered more tractable and practical linear time-invariant (LTI)
relaying, and proposed an efficient joint design algorithm for
source and relay filters for general inter-symbol interference
(ISI) Gaussian relay channels. However, a performance bound
for LTI relaying was not obtained in [5]. In this paper, we
derive the maximum achievable rate of LTI relaying in finite-
letter characterization, based on results from spectral theory
[6], [7], [8] and a technique similar to that used in [3]. The
obtained result here provides new insights into the structure
and performance of optimal linear relay processing.

Notations: We will make use of standard notational con-
ventions. Vectors and matrices are written in boldface with
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Fig. 1. System model

matrices in capitals. All vectors are column vectors. For scalar
a, a∗ denotes its complex conjugate. For matrixA, AT , AH

and tr(A) indicate the transpose, Hermitian transpose and
trace of A, respectively.In stands for the identity matrix
of size n (the subscript is omitted when unnecessary). The
notationx ∼ N (µ,Σ) means thatx is Gaussian distributed
with mean vectorµ and covariance matrixΣ. E{·} denotes
the expectation.R and C are the sets of reals and complex
numbers, respectively.ι =

√
−1.

II. SYSTEM MODEL AND BACKGROUND

We consider the general additive white Gaussian noise
(AWGN) relay channel in Fig. 1. Here,xs is the transmitted
symbol at the source;xr and yr are the transmitted and
received symbols at the relay, respectively; andyd is the
received symbol at the destination. We assume that the channel
coefficients from the source to the destination, from the source
to the relay, and from the relay to the destination are1, a, and
b, respectively. Then, the received signals at the relay and the
destination at thei-th symbol time are given by

yr[i] = axs[i] + wr[i], and

yd[i] = xs[i] + bxr[i] + wd[i],

respectively, wherews[i] andwr[i] are independent and both
are from N (0, σ2). The source and relay have maximum
available per-symbol average powerP and γP , respectively,
for someγ > 0.

Here, we introduce theToeplitz distribution theoremfor our
later development.

Theorem 1:[6] Let {ry
k := E{yny∗

n−k}} be an absolutely
summable autocovariance sequence of a stationary process
{yn}; let Σy

n = [ry
i−j ]

n
i,j=1 be its Toeplitz covariance matrix;

let fy(ω) := 1
2π

∑∞
k=−∞ ry

ke−ιkω be the spectrum of{yn};

and let{ζ(n)
i } be the eigenvalues ofΣy

n. Then,

lim
n→∞

1

n

n
∑

i=1

g(ζ
(n)
i ) =

1

2π

∫ 2π

0

g(fy(ω))dω (1)



for any continuous functiong(·).

III. L INEAR TIME-INVARIANT RELAYING

A. General LTI relaying
The general (possibly noncausal) linear processing at the

relay is given byxr[i] =
∑∞

j=−∞ hijyr[j] for arbitrary linear
combination coefficientshij . However, such linear processing
requires time-varying filtering at the relay and is not readily
realizable. Thus, in this paper we restrict ourselves to thecase
of LTI filtering at the relay. In this case, the relay output is
given by

xr[i] =

∞
∑

j=−∞

hjyr[i − j], (2)

where [· · · , h−1, h0, h1, h2, · · · ] is the (possibly noncausal)
LTI impulse response of the relay filter which is assumed
to be stable, i.e.,

∑+∞
j=−∞ |hj | < ∞. Thus, the frequency

responseH(ω) of the relay filter is well defined asH(ω) =
(1/2π)

∑∞
j=−∞ hje

−ιjω. Note that the frequency response
H(ω) is complex in general since{hj} is arbitrary except
being stable. (2) can be written in vector form as

xr
n = Hnyr

n,

where xr
n = [xr[1], xr[2], · · · , xr[n]]T , yr

n = [yr[1], yr[2],
· · · , yr[n]]T , and

Hn =











h0 h−1 · · · h−n+1

h1 h0 · · ·
...

.. .
.. . h−1

hn−1 · · · h1 h0











With the LTI filtering relay, the overall channel from the
source to the destination becomes a Gaussian ISI channel, and
stationary Gaussian input distribution is sufficient to achieve
the capacity [9, pp.407-430]. Thus, we assume stationary
Gaussian input distribution hereafter:

xs
n = [xs[1], xs[2], · · · , xs[n]]T ∼ N (0,Σs

n),

whereΣs
n is Hermitian and Toeplitz by the stationary of the

input process. Then, the power constraints for the source and
relay are respectively given by

tr(Σs
n) ≤ nP, and (3)

E{tr(Hnyr
n(Hnyr

n)H)} = tr(Hn(a2Σs
n + σ2I)HH

n ) ≤ nγP.

The received signal vector at the destination is given by

yd
n = xs

n + bxr
n + wd

n = (I + abHn)xs
n + bHnwr

n + wd
n,

where yd
n = [yd[1], · · · , yd[n]]T and wr

n,wd
n ∼ N (0, σ2I).

The transmission rate in this case is given by1
nI(xs

n;yd
n)

=
1

2n
log

∣

∣(I + abHn)Σs
n(I + abHn)H + σ2(I + b2HnHH

n )
∣

∣

|σ2(I + b2HnHH
n )|

,

=
1

2n
log
∣

∣

∣
I + GnΣs

nGH
n

∣

∣

∣
, (4)

whereGn = σ−1(I + b2HnHH
n )−1/2(I + abHn). Thus, the

maximum rate with LTI relaying for block sizen is given
by maximizing the mutual information (4) overΣs

n and Hn

under the power constraints (3), and the capacity with possibly
noncausal LTI relaying is given by its limit

CLTI = lim
n→∞

sup
Σs

n,Hn

1

n
I(xs

n;yd
n) (5)

asn → ∞, if the limit exists [3]. The capacity expression in
(5) has infinite-letter characterization. In the next section, we
will derive an expression for the maximum achievable rate in
this LTI relaying case infinite-letter characterization, based
on a similar technique to that used in [3] and the Toeplitz
distribution theorem.

B. The capacity for LTI relaying
First, let Σd

n denote the covariance matrix of the noise-
whitened output symbol vector at the destination in (4), i.e.,
Σd

n := I + GnΣs
nGH

n , and let{ζ(n)
d,i , i = 1, · · · , n} be the

eigenvalues ofΣd
n. The spectrum of the noise-whitened output

process at the destination is simply given by [10]

fd(ω) = 1 +
|1 + abH(ω)|2

σ2(1 + b2|H(ω)|2)fs(ω), (6)

wherefs(ω) is the input spectrum andH(ω) is the frequency
response of the relay filter. Also, the spectrum of the relay
output is given by

fr(ω) = (a2fs(ω) + σ2)|H(ω)|2. (7)

Let then uniform samples offd(ω) and those offr(ω) over
ω ∈ [0, 2π) be {ξ(n)

d,i , i = 1, · · · , n} and{ξ(n)
r,i , i = 1, · · · , n},

respectively, i.e.,

ξ
(n)
d,i := fd(ω)|ω=(2π(i−1)/n) andξ

(n)
r,i := fr(ω)|ω=(2π(i−1)/n).

By (6) and (7) we have

ξ
(n)
d,i = 1 +

|1 + abλ
(n)
i |2

σ2(1 + b2|λ(n)
i |2)

µ
(n)
i , (8)

ξ
(n)
r,i = (a2µ

(n)
i + σ2)|λ(n)

i |2, (9)

for i = 1, · · · , n, where {µ(n)
i } and {λ(n)

i } are the n
uniform samples of the input spectrumfs(ω) and those of
the frequency responseH(ω) of the relay filter, respectively,
over ω ∈ [0, 2π). Note that{µ(n)

i } are real and{λ(n)
i } are

complexin general. (Hereafter, we will omit the superscript
(n) for notational simplicity.) Then, we have

1

n

∣

∣

∣

∣

I(xn
s ;yn

d ) − 1

2

n
∑

i=1

log ξd,i

∣

∣

∣

∣

≤ ǫn (10)

for someǫn ↓ 0 asn → ∞, since
∣

∣

∣

∣

1

n
I(x

n
s ;y

n
d ) −

1

4π

∫

2π

0

log(f
d
(ω))dω +

1

4π

∫

2π

0

log(f
d
(ω))dω

−
1

2n

n
∑

i=1

log ξd,i

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

n
I(x

n
s ;y

n
d ) −

1

4π

∫

2π

0

log(f
d
(ω))dω

∣

∣

∣

∣

+

∣

∣

∣

∣

1

4π

∫

2π

0

log(f
d
(ω))dω −

1

2n

n
∑

i=1

log ξd,i

∣

∣

∣

∣

≤ ǫn.

(11)

The first inequality is obtained by the triangle inequality.
The first term in the right-handed side (RHS) of the first



1

2n

n
∑

i=1

log

(

1 +
µi

σ2

|1 + abλi|2
1 + b2|λi|2

)

− ǫn ≤ 1

n
I(xn

s ;yn
d ) ≤ 1

2n

n
∑

i=1

log

(

1 +
µi

σ2

|1 + abλi|2
1 + b2|λi|2

)

+ ǫn (12)

.

inequality in (11) decays to zero by Theorem 1 because
I(xn

s ;yn
d ) = (1/2) log |Σd

n| = (1/2)
∑

i log ζd,i, f(x) =
log x is continuous overx > 0 and the eigenvalues ofΣd

n

is away from zero due to the added identity matrix. The
second term in the RHS of the first inequality in (11) also
decays to zero since1

2n

∑n
i=1 log ξd,i is the Riemann sum

for the integral 1
4π

∫ 2π

0
log(fd(ω))dω; it converges for any

almost-surely continuous spectrumfd(ω) over the domain
[0, 2π). (Note thatfd(ω) ≥ 1, ∀ ω ∈ [0, 2π). See (6).) (10)
implies (12). Similarly, the powers at the source and relay are
respectively given in terms of{µi, λi} by

1

n

∣

∣

∣

∣

∣

tr(Σs
n) −

n
∑

i=1

µi

∣

∣

∣

∣

∣

≤ ǫ′n and (13)

1

n

∣

∣

∣

∣

∣

tr(Hn(a2Σs
n + σ2I)HH

n ) −
n
∑

i=1

(a2µi + σ2)|λi|2
∣

∣

∣

∣

∣

≤ ǫ′′n

(14)
for someǫ′n ↓ 0 and ǫ′′n ↓ 0 as n → ∞. By (12,13,14), for
sufficiently largen, the maximum rate for LTI relaying with
block sizen is given by

R̄
(n)
LTI

(P, γP ) = max
{µi},{λi}

1

2n

n
∑

i=1

log

(

1 +
µi

σ2
·
|1 + abλi|

2

1 + b2|λi|2

)

± ǫn,

(15)

with slight abuse of the notation±, subject to the constraints
∑n

i=1 µi ≤ n(P − ǫ′n),
∑n

i=1(a
2µi + σ2)|λi|2 ≤ nγ(P − ǫ′′n)

andµi ≥ 0 for i = 1, · · · , n.
Now let us derivelimn→∞ R̄

(n)
LTI(P, γP ). To derive a finite-

letter expression for the limit, we follow the technique used
to obtain the capacity for the frequency-division linear relay
channel by El Gamal et al. [3]. First, suppose that there exists
n0 ∈ {1, 2, · · · , n} such thatλ1 = · · · = λn0

= 0 and assume
that µi > 0 andλi 6= 0 for i > n0 without loss of optimality.
Let θ0 ∈ [0, 1] be the portion of the total source power
n(P−ǫ′n) used byµ1, · · · , µn0

. Then,
∑n0

i=1 µi = θ0n(P−ǫ′n)
and the relay does not allocate any power to these bins out
of the total relay powernγ(P − ǫ′′n). Thus, each bin is a
point-to-point channel with the same channel coefficient, and
hence the optimal source power allocation isµi =

θ0n(P−ǫ′n)
n0

for i = 1, · · · , n0. For global optimality the Karush-Kuhn-
Tucker (KKT) condition should be satisfied for the remaining
variables{µi, λi, i = n0 + 1, · · · , n}. For the problem (15)
the Lagrangian and KKT condition are respectively given by

L =
1

2n

n
∑

i=n0+1

log

(

1 +
µi

σ2
·
|1 + abλi|

2

1 + b2|λi|2

)

+ α

(

n(P − ǫ
′

n) (16)

−

n
∑

i=n0+1

µi

)

+ β

(

nγ(P − ǫ
′′

n) −

n
∑

i=n0+1

(a
2
µi + σ

2
)|λi|

2

)

and

∂L/∂µi = ∂L/∂λi = 0, i = n0 + 1, · · · , n, (17)

where∂/∂µi is the ordinary real derivative and∂/∂λi is the
complex derivative defined by Brandwood [11]. Here, each

partial derivative in (17) is a joint function ofµi andλi. From
∂L
∂µi

= 0, optimal µi is given in terms ofλi by

µi =
|1 + abλi|

2 − 2nσ2(α + βa2|λi|
2)(1 + b2|λi|

2)

2n(α + a2βλ2
i
)|1 + abλi|2

. (18)

By substituting (18) intoL, taking the complex derivative of
L w.r.t. λi, and performing some manipulation,∂L∂λi

= 0 is
expressed asa system of two bivariate polynomial equations
with degree seven:

7
∑

k=0

k
∑

lk=0

c
(k)
lk

xk−lk
i ylk

i = 0 and
7
∑

k=0

k
∑

lk=0

d
(k)
lk

xk−lk
i ylk

i = 0,

(19)
where xi and yi are the real and imaginary parts ofλi,
respectively, i.e.,λi = xi + ιyi, and c

(k)
lk

and d
(k)
lk

are
independent of the bin indexi. (The two equations in (19)
are from the real and imaginary parts of∂L/∂λi = 0.)
Here, we have two variables(xi, yi) and two nonidentical
bivariate polynomial equations. By Bezout’s theorem [12],
the maximum number of solutions to (19) is the product of
the degrees of the two polynomials. Thus, in our case the
maximum is49 = 7× 7, and optimalλi = xi + ιyi satisfying
the KKT condition is one of the solutions{λ̄1, · · · , λ̄49} to
(19), regardless ofi. (If the number of solutions is less than
49, then some of̄λj are the same.) Due to this fact, the
computation ofR̄(n)

LTI(P, γP ) in (15) requires only a finite
number of modes. Letnj , j = 1, · · · , 49, be the number of
occurrence of̄λj out of n−n0 bins (n0 +n1 + · · ·+n49 = n).
Then, the objective function for maximization in (15) is given
by

Φ
(n)
LTI

:=
n0

2n
log

(

1 +
θ0n(P − ǫ′n)

n0σ2

)

(20)

+
1

2n

49
∑

j=1

nj log

(

1 +
θjn(P − ǫ′n)

njσ2
·
|1 + abλ̄j |

2

1 + b2|λ̄j |2

)

whereθj is the portion of the total power allocated to mode
j, (θ0 + · · · + θ49 = 1). Based on the above, we now have
the capacity for the Gaussian relay channel with LTI relaying,
given in the following theorem.

Theorem 2:The capacity of the linear Gaussian relay chan-
nel with possibly noncausal LTI relaying is given by

CLTI(P, γP ) = max
τ ,θ,

¯λ
τ0C

(

θ0P

τ0σ2

)

(21)

+

49
∑

j=1

τjC
(

θj

τj
· P

σ2
· |1 + abλ̄j |2
1 + b2|λ̄j |2

)

subject to τj , θj ≥ 0, the mode combination con-
straint

∑49
j=0 τj = 1, the power distribution con-

straint
∑49

j=0 θj = 1, and the relay power constraint
∑49

j=1 τj |λ̄i|2
(

a2θjP/τj + σ2
)

= γP . Here, τ = [τ0, τ1,

· · · , τ49] ∈ R
50, θ = [θ0, θ1, · · · , θ49] ∈ R

50, λ̄ =
[λ̄1, λ̄2, · · · , λ̄49] ∈ C

49, andC(x) = 1
2 log(1 + x).



Proof: Substitute (20) into (15), and take limit asn → ∞.
Then, we haveǫn, ǫ′n, ǫ′′n → 0, limn→∞

nj

n = τj , and the limit
of (15) is (21).(Converse)The achievable rate cannot be larger
than (21) because the maximum number of modes except
mode 0 is 49 by Bezout’s theorem.(Achievability) Suppose
that we have obtained{τj , θj , λ̄j} from the optimization (21).
Shortly, we will see that the above rate can be obtained
by partitioning the overall frequency band into 50 subbands
and by using IAF with gain̄λj at subbandj. This can be
accomplished by using a filter bank of 50 ideal band-pass
filters (one for each subband and gainλ̄j for subbandj). The
impulse response of this filter bank is the sum of the inverse
DTFTs of the frequency responses of the subband filters, and is
stable. (Causal achievability of the rate (21) will be discussed
shortly.) �

Remark 1: (i) When the number of solutions to (19) is
less than 49, (21) is still valid. Solving (21) will yield
the same result as solving a possible further-reduced
optimization problem in this case. This is like that solving
the sizen problem (15) directly should yield the same
result as solving the reduced-size problem with the cost
(20) when the number of solutions is exactly 49. (21) has
already finite-letter characterization, but the number of
the required modes can be reduced further by considering
the structure of the optimization (21). See Corollary 1.

(ii) Since the bins here are frequency bins, a mode can be
interpreted as a frequency subband. Later, we will see
that the time segment interpretation is also possible.

Corollary 1: The capacity of the linear Gaussian relay
channel with possibly noncausal LTI relaying is given by
CLTI(P, γP ) =

max
τ ,θ,

¯λ
τ0C

(

θ0P

τ0σ2

)

+

7
∑

j=1

τjC
(

θj

τj
· P

σ2
· (1 + abλ̄j)

2

1 + b2λ̄2
j

)

(22)

for real a and b, subject to τj , θj ≥ 0,
∑7

j=0 τj = 1,
∑7

j=0 θj = 1, and
∑7

j=1 τj λ̄
2
j

(

a2θjP/τj + σ2
)

= γP . Here,
τ = [τ0, τ1, · · · , τ7] ∈ R

8, θ = [θ0, θ1, · · · , θ7] ∈ R
8,

λ̄ = [λ̄1, λ̄2, · · · , λ̄7] ∈ R
7, andC(x) = 1

2 log(1 + x).
Proof: To maximize the argument,|1+abλ̄j |2/(1+b2|λ̄j |2) in
C(·) in (21), λ̄j should be aligned with the complex conjugate
of ab under the same magnitude. Hence, optimalλi is real, and
we can perform the optimization only over realλi without loss
of optimality. The same procedure as before can be performed
except that{λi} are now real and that∂L/∂λi is the ordinary
real derivative. In this case,λi is a solution of a fixed 7th order
univariate polynomial equation,

∑7
k=0 ckxk = 0 (c7 6= 0),

regardless ofi. So, we only need at most seven realλ̄j ’s. (In
the case thata andb are complex, still the phase of optimalλ̄j

is fixed and only the magnitude is a single real variable. Thus,
we have the same result of at most seven different solutions.)
�

Note that the degree of freedom in realλi is halved compared
with the complexλi case, and the maximum number of
solutions to the corresponding KKT conditions is the square-
root of that in the complexλi case.

Since causal LTI filters are contained in the set of the
considered possibly noncausal filters, (21) is an upper bound
on the capacity of the Gaussian relay channel with a (single)
causal LTI relay filter. To achieve (22) by using a single LTI
filter together with a stationary input process, we need a bank
of ideal bandpass filters which can be viewed as a single LTI
filter as whole and its impulse response isnoncausal. However,
the following theorem shows that still the rate (22) can be
achieved by causal linear relay operation by using multiple
causal filters over different time segments.

Theorem 3 (Causal achievability):The rate (22) can be
achieved by causal linear relay operation by using multiple
IAFs over different time segments.

Proof: The causal achievability of (22) can be shown by
extending the idea of bursty AF in [3]. Suppose that we are
given a solution(τ ∗,θ∗, λ̄

∗
) to the optimization (22). Then,

consider the time interval0 ≤ t ≤ T . Divide the overall time
interval into eight time segments with time fractionτj for
the time segmentj. For time segment 0, the source transmits
with power P ∗

0 = θ∗0P/τ∗
0 and the relay is turned off. For

time segmentj ∈ {1, 2, · · · , 7}, the source transmits with
power P ∗

j = θ∗j P/τ∗
j and the relay operates as IAF with

gain λ̄∗
j . Make T sufficiently large so that the smallest time

segmentjmin is large enough to achieve the corresponding

rate C
(

P∗

jmin

σ2 · (1+abλ̄∗

jmin
)2

1+b2λ̄∗2
jmin

)

. Then, the rate of this causal

linear scheme is exactly given byCLTI(P, γP ) in (22), and
all the source and relay power constraints are satisfied.�

One could consider more segmentation in time for better
performance. In this case, the rate is given byR

(m)
T =

τ0C
(

P0

σ2

)

+
∑m

j=1 τjC
(

Pj

σ2 · (1+abλ̄j)
2

1+b2λ̄2
j

)

for the segmentation

of m segments. By the same argument as in the frequency-
domain analysis,m > 7 does not yield better performance
and m = 7 is enough. The time segmentation method
(nonstationary in time) in Theorem 3 can be considered as the
dual approach in time domain of the frequency segmentation
method (nonstationary in frequency) with a single LTI filter.

In [3], El Gamal et al. obtained the capacity formula for the
frequency-division (FD) linear Gaussian relay channel, given
by

C
F D−L

(P, γP ) = max
τfd,θfd

,η
τ

fd
0 C

(

θfd
0

P

τfd
0

σ2

)

(23)

+

4
∑

j=1

τ
fd
j C

(

θfd
j

τfd
j

P

σ2

(

1 +
a2b2ηj

1 + b2ηj

))

,

where τ fd = [τfd
0 , · · · , τfd

4 ], θfd = [θfd
0 , · · · , θfd

4 ], η =
[η1, · · · , η4], subject to τfd

j , θfd
j , ηj ≥ 0,

∑4
j=0 τfd

j =
∑4

j=0 θfd
j = 1, and

∑4
j=1 τfd

j ηj

(

a2θfd
j P/τfd

j + σ2
)

= γP .
One simple difference of the LTI relay from the FD relay
is the maximum number of modes (or segments) required to
achieve the capacity. A more important difference lies in the
difference in the operation at each mode. In the LTI relay case,
the effective signal-to-noise ratio (SNR) at segmentj in (22)



is given by
Pj

σ2
· (1 + abλ̄j)

2

1 + b2λ̄2
j

. (24)

This is exactly the effective SNR of the relay channel equipped
with IAF with gain λ̄j . Thus, Corollary 1 (or Theorem 3)
states thata capacity-achieving strategy is to divide the overall
frequency band (or the overall time interval) into at most eight
segments and to make the relay behave as an IAF relay with
gain λ̄j at segmentj. In the FD relay, on the other hand, the
effective SNR inC(·) in (23) is given by

Pj

σ2

(

1 +
a2b2ηj

1 + b2ηj

)

(25)

for segmentj. Here, let us consider the following data model:
[

yd,1

yd,2

]

=

[

abλ̄j

1

]

xs +

[

bλ̄jwr + wd,1

wd,2

]

, (26)

wherexs ∼ N (0, Pj) andwd,1, wd,2, wr
i.i.d.∼ N (0, σ2). Note

that the data model (26) corresponds to the FD relay channel
in which the relay is IAF with gain̄λj . The SNR after optimal
matched filtering for the received signal in (26) is given by

Pj

σ2

(

1 +
a2b2λ̄2

j

1 + b2λ̄2
j

)

, (27)

which is exactly the same as (25) with substitutionηj = λ̄2
j .

Hence, (23) states that a capacity-achieving strategy in the
linear FD relay is to divide the overall frequency band or
time interval into at most five segments and to use IAF at
each segment. In both cases,an optimal strategy achieving
the corresponding capacity is to divide the overall frequency
band or time interval into a finite number of segments and
to use IAF at each segment!Surprisingly, infinite frequency
or time segmentation is not required. The optimality of this
finite segmentation comes from the fact that the channel is
flat-fadingand thus each term in the LagrangianL in (16) has
the same form. In the ISI channel case, the frequency-domain
channel coefficientsa and b depend on the bin indexi. (We
should useai and bi instead ofa and b.) Hence, the solution
(µi, λi) to ∂L/∂µi = 0 and∂L/∂λi = 0 can be different for
all i ∈ {1, · · · , n}. Thus, in the ISI case, the optimality of
finite frequency (or time) segmentation is not guaranteed any
more, and the capacity has infinite-letter characterization.

IV. N UMERICAL RESULTS

Eq. (22) was evaluated by using MATLAB. ((21) and
(22) resulted in the same value.) Fig. 2 show the rates of
several schemes. Since the performance of other schemes is
available in [5], we only considered the unlimited look-ahead
cut-set bound, IAF and LTI relaying. Fig. 2 (a) shows the
performance in the case ofa = 1, b = 2 and γ = 1. In
this case, it is known that the IAF already performs well and
achieves the capacity whenP ≥ 1/3 [4]. The LTI relaying
improves the performance over the IAF at the very low SNR
values, but the gain is not significant. Fig. 2 (b) shows the
performance in the case ofa = 2, b = 1 and γ = 1 in

which the IAF has considerable performance degradation from
the cut-set bound. Even in this case, the gain by general LTI
filtering over the IAF is not so significant. Thus, IAF seems
quite sufficient for general single-input single-output (SISO)
flat-fading1 Gaussian relay channels when linear filtering is
considered for the relay function.

V. CONCLUSION

We have considered the LTI Gaussian relay channel. By
using the Toeplitz distribution theorem and the technique in
[3], we have obtained the capacity for LTI relaying in finite-
letter characterization, and have shown that the capacity can
be achieved by dividing the overall frequency band (or time
interval alternatively for causal achievability) into at most eight
segments and by using IAF with possibly different gain in each
segment. We have provided some numerical results, and the
numerical results show that the gain by general LTI filtering
over the IAF is not so significant for flat-fading Gaussian relay
channels.
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Fig. 2. The performance of LTI relaying: (a)a = 1, b = 2 and (b)a =
2, b = 1

REFERENCES

[1] T. M. Cover and A. El Gamal, “Capacity theorems for the relaychannel,”
IEEE Trans. Inform. Theory, vol. 25, pp. 572 – 584, Sep. 1979.

[2] A. El Gamal and M. Aref, “The capacity of the semideterministic relay
channel,”IEEE Trans. Inform. Theory, vol. 28, p. 536, May 1986.

[3] A. El Gamal, M. Mohseni, and S. Zahedi, “Bounds on capacityand min-
imum energy-per-bit for AWGN relay channels,”IEEE Trans. Inform.
Theory, vol. 52, pp. 1545 – 1561, Apr. 2006.

[4] A. El Gamal, N. Hassanpour and J. Mammen, “Relay networks with
delays,” IEEE Trans. Informa. Theory, vol. 53, pp. 3413 – 3431, Oct.
2007.

[5] C. Kim, Y. Sung, and Y. H. Lee, “A joint time-invariant fil-
tering approach to the linear Gaussian relay problem,”to ap-
pear in IEEE Trans. Signal Process., Jul. 2012. Available at
http://wisrl.kaist.ac.kr/papers/KimSungLee12SP.pdf.
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