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Abstract— In this paper, the Gaussian relay channel with linear "

time-invariant relay filtering is considered. Based on spectral

theory for stationary processes, the maximum achievable rate of a n Yy T b

this subclass of Gaussian relay operation is obtained in finite- rer Wq
letter characterization. The maximum rate of this subclass can

be achieved by dividing the overall frequency band (or the - é
overall time interval alternatively) into at most eight segments s 1 +
and by making the relay behave as an instantaneous amplify-and-

forward relay at each segment. Numerical results are provided Fig. 1. System model

to evaluate the performance of LTI relaying, and the numerical

results show that LTI relaying does not increase the rate

considerably over the instantaneous amplify-and-forward relay matrices in capitals. All vectors are column vectors. Falac
in flat-fading Gaussian relay channels. a, a* denotes its complex conjugate. For matAx A”, A
|. INTRODUCTION and t(A) indicate the transpose, Hermitian transpose and

The relay channel problem is one of the classical problermace of A, respectively.I,, stands for the identity matrix
in information theory, and still the capacity of this threede of size n (the subscript is omitted when unnecessary). The
network is not exactly known. However, many ingenious coghotationx ~ A (u, ) means thak is Gaussian distributed
ing strategies including decode-and-forward, compress-awith mean vector and covariance matrix. E{-} denotes
forward, etc. beyond the simple instantaneous amplify-anghe expectationR and C are the sets of reals and complex
forward (IAF) scheme have been developed [1], [2]. Recentiyumbers, respectively.= /—1.
El Gamal et al. proposed a more advanced linear scheme
for relay channels based on linear processing at the relay Il. SYSTEM MODEL AND BACKGROUND
to compromise the complexity and performance between theWe consider the general additive white Gaussian noise
complicated coding strategies and IAF [3], and showed thg®@WGN) relay channel in Fig. 1. Here;, is the transmitted
the scheme could perform well in certain cases by giving aymbol at the sourcey, and y, are the transmitted and
example. Although the capacity for frequency-divisiorelin received symbols at the relay, respectively; apdis the
relaying was obtained in their work, the general linearyelaeceived symbol at the destination. We assume that the ehann
case was not explored fully, and the capacity for the generalefficients from the source to the destination, from thes®u
linear relay channel was not obtained; the general linerthe relay, and from the relay to the destination Bre, and
problem is a sequence of non-convex optimization problemhsrespectively. Then, the received signals at the relay hed t
and seemingly intractable [3] except the simple case of orgestination at the-th symbol time are given by
tap IAF [4]. To circumvent such difficulty, in [5] we consid- ,
ered more tractable and practical linear time-invariarii)L yrli]
relaying, and proposed an efficient joint design algoritiom f yali] = @s[i] + bz, [i] + wali],

slosl:rcGe andi rilfyl f||terhs :1?: Iger:_?r\?vl ytfr—symr?orlr;ntﬁnﬁef respectively, wherev,[i] andw,[i] are independent and both
(ISI) Gaussian relay channels. However, a performance OUle from N(0,0%). The source and relay have maximum

for LTI relaying was not obtained in [5]. In this paper, we_ _. ) .
derive the maximum achievable rate of LTI relaying in finite?1 vailable per-symbol average powerand P, respectively,

o or some~y > 0.
letter characterization, based on results from spectebrih . e
6], [71, [8] and a technique similar to that used in [3]. Th Here, we introduce th&oeplitz distribution theorerfor our

. : o . Sater development.
obtained result here provides new insights into the stractu Theorem 1:[6] Let {r! := E{y,y*_,}} be an absolutely

and p_erformance_of optimal finear relay processzg. summable autocovariance sequence of a stationary process
Notqtlons: We will make use of stanqlard _notatlonal conty, }: let £ = [r/_,]¢,_, be its Toeplitz covariance matrix;
ventions. Vectors and matrices are written in boldface wij tfU(w) = 5= S0 rle 'k be the spectrum ofy, };

Ya

azs[i] + w,[i], and
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for any continuous functiog(-). under the power constraints (3), and the capacity with pbssi

noncausal LTI relaying is given by its limit
IIl. LINEAR TIME-INVARIANT RELAYING

A. General LTI relaying Crrr = lim  sup lI(x;";;yi) (5)
The general (possibly noncausal) linear processing at the SR - L
relay is given byz,[i] = 377°  _ hi;y.[j] for arbitrary linear a5y, — oo, if the limit exists [3]. The capacity expression in
combination coefficients;;. However, such linear processings) has infinite-letter characterization. In the next settiwve
requires time-varying filtering at the relay and is not réadi || derive an expression for the maximum achievable rate in
realizable. Thus, in this paper we restrict ourselves tcti®® this LT| relaying case irfinite-letter characterization, based
of LTI filtering at the relay. In this case, the relay output ign a similar technique to that used in [3] and the Toeplitz

given by . distribution theorem.
Z hjyeli — jl, (2) B. The capacity for LTI relaying
j=—o0 First, let Ed denote the covariance matrix of the noise-

where [+ h_1,ho, b, ha,---] is the (possibly noncausaI)Whltened output symbol vector at the destination in (4), i.e

. sH (n) .

LTI |mpulse response of the relay filter which is assumed™ ° I+ G"%"G"' and let{(, dirt = .1’ ’."} be the
to be stable, i.e. Z Ih;| < oco. Thus, the frequency eigenvalues oB;,. The spectrum of the noise-whitened output

j=—o0 Lo .
responsel (w) of the relay filter is well defined a#l(w) = Process at the destination is simply given by [10]
(1/27) E],foohe—”"“. Note that the frequency response dr s |1+ abH(w)|> . 6
H(_w) is complex in gener:_all sin_céhj} is arbitrary except Filw) =1 o?(1 —|—b2\H(w)\2)f (@), ©)
being stable. (2) can be written in vector form as

where f¢(w) is the input spectrum an# (w) is the frequency
x" =H,y", response of the relay filter. Also, the spectrum of the relay
output is given by

where xi, = [w[1], 2, (2], a7, yh = [el1],ue 2], i o
-, y-[n]]", and f1(w) = (a”f*(w) + o7)[H(w)[". ()
ho h_i -+ h_nq Let then uniform samples off¢(w) and those off" (w) over
hi hy - wel0,2r) be{eV,i=1,---,n} and{¢W,i=1,--- ,n},
H, = : o respectively, i.e.,
: . . .
A ho f],? = fd(w)|w:(27r(ifl)/n) andiff? = (W) |w=(2x(i=1)/n)-

With the LTI filtering relay, the overall channel from theBy (6) and (7) we have

source to the destination becomes a Gaussian ISI chanwel, an (n) 2
4 M L(”)

stationary Gaussian input distribution is sufficient toiaca é"i) = SRR (8)
the capacity [9, pp.407-430]. Thus, we assume stationary ’ 02(1+b2|>\§")|2)
Gaussian input distribution hereafter: 5(7;) _ (GQME”) + 02)‘/\1(_n)|27 9)
S — .« T ~ s n n
X, = [2a[l], 2a[2), - @afn]] ~ N(0, 5), for i = 1,---,n, where {u{™} and {A\{"} are then

where X is Hermitian and Toeplitz by the stationary of theuniform samples of the input spectruifif(w) and those of
input process Then, the power constraints for the sourde gRe frequency responské (w) of the relay filter, respectively,

I I r
relay are respectively given by overw € [0,27). Note that{x\™} are real and{\\")} are

r(=3) < nP and (3 complexin general. (Hereafter, we will omit the superscript
E{tr(Hyy;, (Hoyy)™)} = tr(Ho(a®S5 + 0’DH]) < nyP. (n) for notational simplicity.) Then, we have
The received signal vector at the destination is given by 1

n‘l( svyd Zlogf(h < é€p (10)

vy =x5 +bx +wi = (14 abH,,)x5 + bH, W’ +w,

whereyd = [yall], - ,ya[n]” and w;, wi ~ N(0,021). for somee, | 0asn = oo, since
. Y  Jall Mo AN . ,
The transmission rate in this case is given-by(x5;y<) '%I(x:’;yg')— %/02 tog(7 (w))des L/OQ s £ )

! |(X+ abH,,) 35 (I + abHy)H + 02(1 + b®H,HI)| 1

= %bg 02(1 1 0>H, HI)| » — %;logfd,i < ' I(xlsyh) — —/ log(f (w))dw‘

_ ]‘ s 2

= 5, los [T+ G @) ‘— log(f* (w))dw — — Z log €a,i < en.
whereG,, = o~ (I + v*H,HY)~Y/2(1 4 abH,,). Thus, the an

maximum rate with LTI relaying for block size is given The first inequality is obtained by the triangle inequality.
by maximizing the mutual information (4) ové; andH,  The first term in the right-handed side (RHS) of the first



Ly pi |1 + abXil? 1 1 fi |1+ abAg|?
> log 1+ 5o s i ) — e < —I(xliyy) < - log 1+ S o2 ) + ey 12
2”; Og( TETreEnE) S (s vd) Znizz:l e\ T epnE) e (12)

inequality in (11) decays to zero by Theorem 1 becaupartlal derivative in (17) is ajomt function qf; and\;. From
I(xD;y7) = (1/2)10g|2nt (1/2) >, log Caiv f(z) = au = 0, optimal ; is given in terms of\; by

log = is continuous over: > 0 and the eigenvalues CEZ

is away from zero due to the added identity matrix. The wi =
second term in the RHS of the first inequality in (11) also
decays to zero smcg% S log&y, is the Riemann sum
for the integral ;- log(fd( ))dw; it converges for any

almost-surely contlnuous spectrurfif (w) over the domain

[0,27). (Note thatf%(w) > 1, V w € [0, 27r) See (6).) (10)

implies (12). Similarly, the powers at the source and reley a_7

|1+ ab);|? — 2no?(a + Ba| N (1 + b2\ ]?)
2n(a + a?BA2)|1 + abX;|? ’

(18)

By substituting (18) intaZ, taking the complex derivative of
L w.rt. \;, and performing some mampulatlorgL =0is
expressed aa system of two bivariate polynom|al equations
with degree seven

respectively given in terms ofu;, \;} by > Z Pab=leyls =0 and Z Z P k=l = 0,
k=01r=0 k=01,=0
" 19)
_Zﬂi <e and (13) where z; and y; are the real and |mag|nary parts of,
i=1 respectively, i.e.,\; = x; + wy;, and c and d(k are
independent of the bln indek (The two equatlons in (19)
1 o are from the real and imaginary parts 6€/0\; = 0.)

€n Here, we have two variable§z;,y;) and two nonidentical
bivariate polynomial equations. By Bezout’s theorem [12],
y the maximum number of solutions to (19) is the product of
for somee), | 0 ande; | 0 asn — oo. By (12,13,14), for the degrees of the two polynomials. Thus, in our case the
suff|c:|ent|y largen, the maximum rate for LTI reIaymg with maximum is49 = 7 x 7, and optimal\; = z; + wy; satlsfylng
block sizen is given by the KKT condition is one of the solutiong\;,- -, A0} to
n ) (19), regardless of. (If the number of solutlons is less than
R (PyP) = max 3o ( 14 b ‘1+“b’\i|,> +e, 49, then some of\; are the same.) Due to this fact, the

2 2\ |2
frad 2l 2” of 1B computation ofR("){_ |n (15) requires only a finite
et;, J =

— |tr(H,, (a*25 + o?T)HH) ; YA
~ [tr(H,. (%5, + 0 ;au+0 )l

ith sliaht ab f th tatiof, subject to th t(15')t number of modes ,49, be the number of
with slight abuse ot the notall subject to the constraints .., rence otx out of n—ny blns (ng +ni4- g = n).

D i S (P —e), Z? (@i +0%) N> <ny(P—€))  Then, the objective function for maximization in (15) is giv

andyu; >0fori=1,--- n. by
Now let us derlvdurn,HOO R(") ;(P,~vP). To derive a finite- ) no fon(P — ¢,)
letter expression for the I|m|t We follow the technique dise  ®;7; = 5, 108 (1 + 72") (20
to obtain the capacity for the frequency-division lineaaye " noa
channel by El Gamal'et al. [3]. First, suppose that theref®xis 1 & 0;n(P —€,) |14 abX;|?
no € {1,2,---,n} such that\; = = 0 and assume Ton Z n; log (1 e 1+b2|5\,‘2>

that p; > 0 and)\ # 0 fori > mng W|thout foss of optimality.

L?}DQO )eugzedl]b ;’e the portl(_)rr;]e?]fzt:he total Zour%e powerwheree is the portion of the total power allocated to mode
6 My -y fop 7/1‘1_ On 6 _

and the relay does not allocate any pcl)wer to these bms cégt(eo + -+ 049 = 1). Based on the above, we now have

of the total relay powem~(P — €’). Thus, each hin is a the capaC|ty for the Gaussian relay channel with LTI relgyin

point-to-point channel Wlth the same channel coefficient] agiven in the following theorem.

hence the optimal source power allocationjs= M Theorem 2:The capacity of the linear Gaussian relay chan-
for i = 1,--- ng. For global optimality the Karush- Kuhn- nel with possibly noncausal LTI relaying is given by
Tucker (K{KT) condition should be }satlsﬁed for the remaining 0P
variables{;, \j,i = ng + 1 For the problem (15) _ i
the Lagrangian and KKT condltfon are respectively given by Crri(PyP) = 71_“3};\706 7002 (21)
1 & i |1+ aba? , 49 ) Y2
c T %-fz 110g<1+§ 1+b2‘)\i|2>+a(n(P_€n) (1) +ZTJ'C @EM
ot ; ;02 14 b2N|?
- i) +B(ny(P—¢) - (@®ni + o)\l I
i=§+1ﬂ) ( ! i=§+1 8 ) subject to Tj,ej > 0, the mode combination con-
and straint %7 0 TJ = 1, the power distribution con-
straint Z —o0; = 1, and the relay power constraint
OL/Op; = OL/ON; =0, i=mng+1,---,n, (17) 2?9:173-\5\ |2 (a 0, P/Tj+0'2) = ~P. Here, ™ = [79,717
whered/dy; is the ordinary real derivative an@/o); is the =+ .7a0] € R, 0 = [0o, 01, 0s] € R? X =

complex derivative defined by Brandwood [11]. Here, eadh;, Ao, - -+, Asg] € C*, andC(z) = 3 log(1 + z).



Proof. Substitute (20) into (15), and take limit as — ~c. Since causal LTI filters are contained in the set of the
Then, we have,,, €, e — 0, lim, .., = = 7;, and the limit considered possibly noncausal filters, (21) is an upper doun
of (15) is (21).(Converse)he achievable rate cannot be largeon the capacity of the Gaussian relay channel with a (single)
than (21) because the maximum number of modes excepusal LTI relay filter. To achieve (22) by using a single LTI

mode 0 is 49 by Bezout's theorerfAchievability) Suppose filter together with a stationary input process, we need & ban
that we have obtainefir;, 6;, \;} from the optimization (21). of ideal bandpass filters which can be viewed as a single LTI
Shortly, we will see that the above rate can be obtainditer as whole and its impulse response@causalHowever,

by partitioning the overall frequency band into 50 subbandke following theorem shows that still the rate (22) can be
and by using IAF with gain\; at subbandj. This can be achieved by causal linear relay operation by using multiple
accomplished by using a filter bank of 50 ideal band-pasausal filters over different time segments.

filters (one for each subband and gainfor subbandj). The  Theorem 3 (Causal achievabilitylthe rate (22) can be
impulse response of this filter bank is the sum of the invergghieved by causal linear relay operation by using multiple
DTFTs of the frequency responses of the subband filters,sangldrs over different time segments.

stable. (Causal achievability of the rate (21) will be dssrd Proof: The causal achievability of (22) can be shown by

shortly.) extending the idea of bursty AF in [3]. Suppose that we are

Remark 1: (i) When _the _numb_er of SQIUtionS to (19) isgiven a solution(7*,8*,X") to the optimization (22). Then,
less than 49, (21) is still valid. Solving (21) will yield

. ) consider the time interval < ¢ < T'. Divide the overall time
the_ same result as _SO|V,mg a pos.S|t?Ie.further-redchﬁJerval into eight time segments with time fraction for
optimization problem in this case. This is like that ssolvmg{;he time segmeni. For time segment 0, the source transmits
the sizen problem (15) directly should yield the sameith power P; = 0:P/7; and the relay is turned off. For
result as solving the reduced-size problem with the cast segmen?j e {01 g ... 7}, the source transmits with
(20) when the number of solutions is exactly 49. (21) h wer P — 9;P/T;7 a7nd tjhe ,relay oparates oo IAE with

already finite-letter characterization, but the number in 5\;_ Make T sufficiently large so that the smallest time

the required modes can be reduced further by consideri . - ; ;
L mentj,..., IS large enough to achieve the correspondin
the structure of the optimization (21). See Corollary 1. % p* (Hagx )2 g P g

(i) Since the bins here are frequency bins, a mode can tde C |~ - T ) Then, the rate of this causal

interpreted as a frequency subband. Later, we will s@gear scheme is exactly given by, r;(P,vP) in (22), and
that the time segment interpretation is also possible. a| the source and relay power constraints are satisfied
Corollary 1: The capacity of the linear Gaussian relay
channel with possibly noncausal LTI relaying is given b§ne could consider more segmentation in time for better
Crri(P,yP) = performance. In this case, the rate is given B)}”) =

70C (%) + 20, 7€ (% : %) for the segmentation

7 , N )2
max 7oC <e0P> +erc <9] L mw) (22) of m segments. By the same argument as in the frequency-

X 2 ) \2
T.0.A Too = AR Y domain analysisy > 7 does not yield better performance
. 7 B and m = 7 is enough. The time segmentation method
for real a and b, subject to7;,0; > 0, >j7; = 1, (nonstationary in time) in Theorem 3 can be considered as the
ST o0 =1,and>"_ 722 (a%0;P/1; + 0?) = yP. Here o i : i
j=0Y = L j=17j i a~vj) T T on) =4 < dual approach in time domain of the frequency segmentation
T = [r0,7, T €7R S [901» 01,--- .0z € R®, method (nonstationary in frequency) with a single LTI filter
A=[A1, A2, -, A7l €RT, andC(z) = 5 log(1 + ). In [3], EI Gamal et al. obtained the capacity formula for the

Proof: To maximize the argumenitl +abX; |*/(1+b%|;]%) in  frequency-division (FD) linear Gaussian relay channelegi
C(-) in (21), A, should be aligned with the complex conjugat Yy
of ab under the same magnitude. Hence, optinabk real, and

we can perform the optimization only over reglwithout loss CFPL(pap) = max ic ( o3P ) 23)

of optimality. The same procedure as before can be performed ’ 14,079 1 %02

except thaf{ \; } are now real and tha£ /9, is the ordinary +i _rag <££ <1 L et ))

real derivative. In this case,; is a solution of a fixed 7th order = fd o2 1+ b2n;

univariate polynomial equationZZ:O cpr® = 0 (cr # 0),

regardless of. So, we only need at most seven reals. (In d d d d d

the case that andb are complex, still the phase of o%)tir’r@ where 7/ = [Tf{ - ’T;d]’f%f = (03", 119‘{ ]’fdn -

is fixed and only the magnitude is a single real variable. Thdgl’ -+, subject to 7%, 655, >0, 357" =
we have the same result of at most seven different solu)iongfzo 01l =1, ande:1 T (aQHIdP/Tde + 02) =9P.

| One simple difference of the LTI relay from the FD relay

Note that the degree of freedom in realis halved compared is the maximum number of modes (or segments) required to
with the complex\; case, and the maximum number ofchieve the capacity. A more important difference lies i@ th
solutions to the corresponding KKT conditions is the squardifference in the operation at each mode. In the LTI relaycas
root of that in the complex); case. the effective signal-to-noise ratio (SNR) at segmeim (22)



is given by B which the IAF has considerable performance degradatian fro
P . (14 abX;)? (24) the cut-set bound. Even in this case, the gain by general LTI
o2 1+ b25\J2. ' filtering over the IAF is not so significant. Thus, IAF seems
quite sufficient for general single-input single-outputSQ)

This is exactly the effective SNR of the relay channel eqe“:bpﬂat-fadingl Gaussian relay channels when linear filtering is

with IAF with gain ;. Thus, Corollary 1 (or Theorem 3) : .
Lo 4 - ﬁ:OhSIdel’ed for the relay function.

states thah capacity-achieving strategy is to divide the overal

frequency band (or the overall time interval) into at mosfrei V. ConcCLUSsION

segments and to make the relay behave as an IAF relay withVe have considered the LTI Gaussian relay channel. By

gain \; at segment. In the FD relay, on the other hand, the!sing the Toeplitz distribution theorem and the technique i

effective SNR inC(-) in (23) is given by [3], we have ob_taiped the capacity for LTI relaying in finite—
0o letter characterization, and have shown that the capaaity c
Pj (1 a”b™n; > (25) be achieved by dividing the overall frequency band (or time

o? 1+ b%n; interval alternatively for causal achievability) into abst eight

for segmentj. Here, let us consider the following data mode€gments and by using IAF with possibly different gain inreac
segment. We have provided some numerical results, and the

{ Ya.1 } _ [ ab); ] _— [ bAjwr + wa,1 ] . (26) numerical results show that the gain by general LTI filtering
Yd,2 1 Wd,2 over the IAF is not so significant for flat-fading Gaussiarayel

wherez, ~ N (0, Pj) andwg,1, wa,2, wy i N(0,0%). Note channels.

that the data model (26) corresponds to the FD relay chai .
in which the relay is IAF with gain\;. The SNR after optimal .
matched filtering for the received signal in (26) is given by .

P, ( 021232 )

1+ % @7 - :
2 2 ’ g

o 1+ b2)\j

—— Cutset bound (uniimited lookahead)
af| —e— L fiteri
——IaF

which is exactly the same as (25) with substitutipn= 5\5.
Hence, (23) states that a capacity-achieving strategy én ..
linear FD relay is to divide the overall frequency band or (a) (b)

time interval into at most five segments and to use IAF @ly 2. The performance of LTI relaying: (@) = 1,b = 2 and (b)a =
each segment. In both cases) optimal strategy achieving 2,b=1
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