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Abstract— In this paper, the problem of adaptive filter design
for interference suppression in multiple-input multiple-output
(MIMO) multiple access (MAC) channels is considered. A
new receiver filter is proposed by formulating the problem
as quadratic minimization under double constraints: One is
the widely-used distortionless constraint and the other is an
additional constraint that bounds the energy of interfering
signals remaining in the filter output. An efficient adaptive
algorithm based on the dual-domain approach is presented to
implement the proposed receiver filter. The proposed adaptive
algorithm effectively incorporates side information into filter
update, and yields better performance than existing adaptive
algorithms. The simulation results show the efficacy of the
proposed adaptive algorithm.

I. INTRODUCTION

The beamformer design problem has been investigated
extensively for several decades due to its wide applications
in many fields including array processing, spatial filtering,
interference suppression, smart antenna systems, etc. The
most well-known classical beamformers include Capon and
zero-forcing (ZF) beamformers (see e.g., [1]) both of which
can be formulated as the linearly constrained minimum vari-
ance (LCMV) design [2]. Under the distortionless constraint
on the desired signal, the Capon (i.e., minimum variance
distortionless response (MVDR)) beamformer achieves the
minimum mean square error (MMSE) with the knowledge of
the steering vector of the desired signal. On the other hand,
the ZF beamformer utilizes the steering vector information of
other interfering signals also to null out the other interfering
signals perfectly, but does not achieve MMSE due to noise
enhancement. In the previous work [3] an efficient adaptive
beamforming algorithm based on the direction of arrival
information of all signals has been proposed in a single-input
multiple-output (SIMO) setup by applying the multi-domain
adaptive filtering technique [4].

In this paper, we extend the algorithm to MIMO systems
and also introduce a new beamformer design criterion to
provide a new insight into the beamformer design and corre-
sponding adaptive algorithm in [3]. The new design criterion
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is given by quadratic cost minimization under linear equality
and quadratic inequality constraints, which is a standard
optimization problem, and the proposed criterion contains
both Capon and ZF beamformers as special cases. For
general cases, the proposed beamformer resides between the
two extreme beamformers. While the classical LCMV beam-
formers are readily implemented by conventional methods
like the constrained (normalized) least mean square (LMS)
algorithm, such conventional adaptive algorithms do not
render an easy solution for the adaptive implementation of
the proposed beamformer containing a quadratic inequality
constraint. To circumvent this difficulty, we resort to the dual-
domain approach [4] which can incorporate the quadratic
constraint effectively by introducing a secondary domain
that can be linearly transformed from the primary domain.
Although the closed-form solution of the proposed design
can not outperform that of the optimal Capon beamformer,
the adaptive implementation of the proposed beamformer
based on the dual-domain approach provides significant
performance gain over conventional adaptive algorithms real-
izing the Capon beamformer since the dual-domain approach
incorporates side information effectively.

The remainder of the paper is organized as follows. In
Section II the data model is introduced. Our new design
criterion and its adaptive algorithm are provided in Sections
III and IV, respectively. Numerical results are provided in
Section V, followed by conclusion in Section VI.

II. DATA MODEL

We consider a MIMO multiple access channel in which
there exist K transmitters (or users) each of which is
equipped with N transmit-antennas and a single receiver
(typically a base station) equipped with M receive-antennas,
as shown in Fig. 1. We assume that the channels are
deterministic and known to the receiver exactly or roughly.
Given a signal vector si[n] ∈ CN of the nth symbol time
at the ith transmitter, the received signal vector is given as
follows:

y[n] = H1s1[n]+H2s2[n]+· · ·+HKsK [n]+n[n] ∈ C
M ,

where Hi ∈ CM×N is the MIMO channel matrix from the
ith transmitter to the receiver; its (p, q) element corresponds
to the channel from the qth transmit-antenna to the pth
receive-antenna, and n[n] ∈ CM is an independent and
identically distributed (i.i.d.) complex Gaussian noise vector.
For simplicity, si, i = 1, · · · , K, are assumed independent
to each other, and si ∼ N (0, σ2

sI), where σ2
s is the signal
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Fig. 1. System model.

power and I the identity matrix. The problem is to recover si

from the data y[n] acquired at the receiver. A linear receiver
approaches this task by designing a matrix F i ∈ CM×N

for each user i such that ŝi[n] := F H

i y[n] ≈ si[n], where
(·)H stands for Hermitian transpose. We use the notation ‖·‖
to denote the norm defined as ‖x‖ :=

√
xHx for x in any

dimensional complex vector space. For a matrix X, we use
‖X‖F to denote the Frobenius norm.

III. THE PROPOSED RECEIVER DESIGN CRITERION

In this section we present our new criterion for beam-
former design and provide its relationship to existing criteria
such as Capon and ZF beamforming methods. (For simplicity
we drop the index n in this section.) Our new design criterion
to recover si is given by

F i,RZF := arg min
F∈CM×N

E

{

∥

∥

∥F Hy

∥

∥

∥

2
}

such that

(C.1) HH

i F = I and

(C.2)
∥

∥

∥H̃
H

i F

∥

∥

∥

2

F
≤ ε, (1)

where E{·} stands for expectation, ε ≥ 0, and

H̃i = [H1, · · · , Hi−1, Hi+1, · · · , HK ] ∈ C
M×N(K−1).

Thus, the proposed scheme tries to minimize the variance
or energy of the beamformer output signal while satisfying
the distortionless constraint (C.1) and containing other user
interference within a certain level (which is imposed by
(C.2)). To yield a simpler form for the problem, we define

f : = [fT

1 , fT

2 , · · · , fT

N ]T ∈ C
MN ,

ȳ : = [yT, yT, · · · , yT]T ∈ C
MN ,

where F =: [f1, f2, · · · , fN ] ((·)T stands for transpose).
Also we define

H̄i : =











Hi O · · · O

O Hi · · · O
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...
. . .
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MN×N2

,

=
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h̄i1, · · · , h̄iN2
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(column partition)

¯̃
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...
. . .
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∈ C
MN×N2(K−1),

c : = [eT

1 , eT

2 , · · · , eT

N ]T ∈ {0, 1}N2

,

where ei := [0, · · · , 0, 1, 0, · · · , 0]T ∈ {0, 1}N , i =
1, 2, · · · , N , stands for the unit vector that has one at the ith
position. Then, the proposed receiver in (1) can be rewritten
in a vector form as follows:

Problem 1:

f i,RZF = argmin
f∈CMN

E

{

∣

∣

∣f
Hȳ

∣

∣

∣

2
}

= argmin
f∈CMN

fHRȳf s.t.

(C.1’) H̄
H

i f = c and

(C.2’)
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¯̃
HH

i f

∥

∥
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2

= fHRH̃f ≤ ε, (2)

where Rȳ := E{ȳȳH} and RH̃ := ¯̃
Hi

¯̃
HH

i . The matrix Rȳ

is assumed to be nonsingular due to the presence of noise,
so the cost function is strictly convex.
The proposed receiver (1) has interesting properties. First,
consider two extreme cases of ε = 0 and ε = ∞ of our
proposed receiver. For ε = 0 the proposed receiver reduces
to the ZF beamformer, whereas it becomes the Capon (or
MVDR) beamformer as ε → ∞. For a finite ε > 0 our
proposed receiver exists between the two extreme receivers
and thus the proposed receiver can be regarded as a restricted
minimum output energy (RMOE) receiver or a relaxed ZF
(RZF) receiver in this case. We adopt the latter name (RZF)
since the proposed receiver exploits the side information
¯̃
H as well as the ZF receiver. The cost of Problem 1 is
monotonically decreasing as the ε value increases, meaning
that the minimum cost is achieved by ε = ∞ (i.e., by
the Capon beamformer). This implies, as well known, that
the Capon beamformer yields the minimum mean square
error (MMSE) and correspondingly the maximum signal-
to-interference-and-noise ratio (SINR). One may therefore
think that there would be no reason for considering such
an in-between receiver. However, the proposed receiver has
significant advantages in its adaptive implementation, which
can be accomplished by the dual-domain approach incorpo-
rating the side information softly in adaptive update.1 (This
will be explained shortly in Section IV.)

Note that the constraints for Capon or ZF beamformers
are linear as {H̄H

i f = c} and {H̄H

i f = c and ¯̃
HH

i f = 0},
respectively, and the design problems for Capon and ZF
beamformers are convex optimization problems under linear
equality constraints. In particular, they belong to quadratic
cost minimization under linear equality constraints, which is
known as the LCMV problem [2]. On the other hand, the
interference constraint (C.2’) is nonlinear and the problem

1The ZF receiver uses the side information ¯̃
H as a hard equality constraint

¯̃
HH

i
f = 0 and yields degraded performance by noise enhancement,

whereas the Capon receiver does not require the side information ¯̃
H.



does not fall into the LCMV category. However the problem
is still convex since the quadratic function in (C.2’) is
convex, although it is not strictly convex, due to the positive
semi-definiteness of RH̃ . Problem 1 is a convex problem
of quadratic cost minimization under linear equalities and
quadratic inequality constraints; the feasibility set is the
intersection of a linear variety and a ’flat’ ellipsoid (due to
the singularity of RH̃ ), hence it is convex. It is well known
that for convex optimization problems the strong duality
holds if the problem is strictly feasible (which is referred
to as Slater’s condition), and the solution is readily given by
Karush-Kuhn-Tucker (KKT) conditions [5]. To satisfy the
Slater’s condition, we assume ε 6= 0. The Lagrangian for
Problem 1 is given by

L(f , λ, ν) = f
H
Rȳf+λ(fH

RH̃f−ε)+

N2

∑

j=1

νj(h̄
H

ijf−cj),

where λ ∈ R, νj ∈ C, and cj is the jth element of c. The
KKT conditions are given by (C.1’), (C.2’), λ ≥ 0, together
with the complementary slackness and gradient conditions
given respectively by

λ(fHRH̃f − ε) = 0 and (3)

Rȳf + λRH̃f +
1

2

∑

j

νjh̄ij = 0. (4)

The condition (4) reduces to

f = −1

2
(Rȳ + λRH̃)−1





∑

j

νjh̄ij



 (5)

= −1

2
(Rȳ + λRH̃)−1H̄ iν (6)

and the ν := [ν1, · · · , νN2 ]T is obtained by solving a linear
system (obtained from (C.1’))

Aν = c, (7)

where A := − 1
2H̄

H

i (Rȳ + λRH̃)−1H̄i. Thus, we have

fλ
i,RZF = (Rȳ+λRH̃)−1H̄i

[

H̄
H

i (Rȳ + λRH̃)−1H̄i

]−1

c.

(8)

Note that the solution (8) is a generalized version of that
of the LCMV formulation obtained in [2]. Let λ = 0 for
the complementary slackness (3). In this case, we need to
impose (C.2’), i.e.,

∥

∥

∥

¯̃
HH

i f 0
i,RZF

∥

∥

∥

2

≤ ε (9)

should be satisfied. In other words, if ε is sufficiently large so
that (9) is satisfied, then f i,RZF = f0

i,RZF; i.e., the solution
reduces back to the LCMV (Capon) beamformer in [2]. On
the other hand, when ε is small so that (9) is not satisfied,
λ can no longer be zero and hence we have

fHRH̃f = ε (10)

for the complementary slackness (this case is more meaning-
ful to us since the interference condition is enforced). The
optimal λ is obtained by the condition (10) with f substituted
by (8). Note that in this case the norm constraint should
be fully exploited for the minimum output energy. λ → ∞
implies ε → 0 because in the limit of λ → ∞ (Rȳ+λRH̃)−1

in front of the right-handed side of (8) has the eigenvalue 0

with multiplicity of the rank of ¯̃
Hi, with its corresponding

eigenvectors given by any orthonormal basis vectors of the
column space of ¯̃

Hi. Thus, f
λ
i,RZF converges to the ZF

beamformer as λ → ∞. Although the solution of Problem 1
involves the λ parameter, its adaptive implementation by the
dual-domain approach does not explicitly use λ (but solely
use ε) as shown below.

IV. ADAPTIVE ALGORITHM CONSTRUCTION

The exact solution to classical Capon or ZF beamformer
requires the knowledge of data covariance matrix Rȳ in
addition to the known channel information H̄i and ¯̃

H i,
and thus such beamformers are implemented in an adaptive
manner in practice. Typically, LCMV beamformers including
Capon and ZF methods have been realized by the constrained
(normalized) least mean square (LMS) algorithm since [2],
in which the LMS adaptation is first applied to reduce the
cost and projection to the hyperplane given by the linear
constraint is then applied. However, due to our new norm
constraint (C.2’) the proposed receiver cannot be imple-
mented by classical CNLMS algorithm realizing LCMV
beamformers. Thus, we require some new method that can
implement the proposed receiver. Our method for an adaptive
implementation of the proposed receiver is based on the
dual-domain approach [4]. In the dual-domain approach, the
second constraint (C.2’) in (1) can easily be incorporated into
adaptive algorithm construction by constructing a secondary
domain. This approach incorporates side information ¯̃

Hi to
attain better performance at the initial phase of adaptation
(in which a sufficient amount of data is not yet observed to
construct a good approximation of the proposed receiver) or
to yield better steady-state performance.

To construct an adaptive algorithm to realize the proposed
receiver f i,RZF, we define the following closed convex sets:

C : = {f ∈ C
MN : H̄

H

i f = c}
Vn : = C ∩ {f ∈ C

MN : f
H
ȳ[n] = 0}, n ∈ N

Bε : = {x ∈ C
N2(K−1) : ‖x‖2 ≤ ε}

where Σ := ¯̃
Hi/σmax(

¯̃
Hi) ∈ CMN×N2(K−1) with

σmax(
¯̃
H i) denoting the maximum singular value of ¯̃

Hi. The
meaning of each set will be explained after presenting the
algorithm.

Let λn ∈ (0, 2) denote the step size, and w
(n)
1 , w

(n)
2 ≥ 0

satisfy w
(n)
1 + w

(n)
2 = 1, ∀n ∈ N. We set the initial receiver

filter as f0 := [[G]T1 , [G]T2 , · · · , [G]TN ]T ∈ C, where [G]j
stands for the jth column of G := H i(H

H

i Hi)
−1. The

proposed algorithm generates the sequence of filters (f n)n∈N



recursively as follows.

fn+1 := PC

(

fn + λnµn(w
(n)
1 g(1)

n + w
(n)
2 Σg(2)

n )
)

, n ∈ N,

where

g(1)
n := PVn

(fn) − fn ∈ C
MN (11)

g(2)
n := PBε

(ΣHfn) −Σ
Hfn ∈ C

N2(K−1) (12)
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
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n
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∥

2

+ w
(n)
2
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∥

∥

∥w
(n)
1 g
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(n)
2 Σg

(2)
n

∥

∥

∥

2

if fn 6∈ Vn ∩ (ΣH)−1(Bε)
1 otherwise.

(13)

Here, for any set S, we denote by PS the metric projection
onto S, and (ΣH)−1(Bε) :=

{

x ∈ CN : ΣHx ∈ Bε

}

. For
the detailed properties of the proposed algorithm, the reader
may refer to [4]. Below we only describe its intuitive idea.
By performing PC as the final operation of updating the
filter at each iteration, the (absolute) constraint f ∈ C is
imposed, keeping the desired signal si[n] undistorted. The
projection PVn

itself enforces the output energy to be zero,
but because of the relaxation by λnµn (which is typically not
unity) and its following PC operation, the output energy is
reasonably recovered to maintain the signal power. The same
applies to PBε

, which itself enforces the interference power
bounded by ε, but it is reasonably relaxed due to its following
operations. In this regard, we call f ∈ Vn, or Σ

Hf ∈ Bε,
as soft constraint. Each projection has the following closed-
form expression:

PC(f ) = Qf + c̃, f ∈ C
MN , (14)

PVn
(f ) = f − 〈y[n], f〉

yH[n]Qy[n]
Qy[n], f ∈ C ⊂ C

MN , (15)

PBε
(x) =







x if ‖x‖2 ≤ ε,
εx

‖x‖ otherwise, x ∈ C
N2(K−1), (16)

where Q := I − H̄ i(H̄
H

i H̄i)
−1H̄

H

i and c̃ :=

H̄i(H̄
H

i H̄ i)
−1c.

V. SIMULATION RESULTS

We set up simulations as follows. There are K = 4
transmitters with N = 2 antennas and a single receiver
with M = 8 antennas. The channel matrices are generated
randomly from i.i.d. complex Gaussian distribution, and they
are then fixed over 500 realizations of the signal and noise
vectors (si[n] and n[n]). For the proposed algorithm, we

set ε :=
∥

∥

∥Σ
Hf i,RZF

∥

∥

∥

2

(which is the optimum bound),

λn := 0.03, and w
(n)
1 := w

(n)
2 := 1/2. The results are

plotted in Fig. 2, in which CNLMS (the blue curve) is the
constrained normalized least mean square algorithm that is
a normalized version of the Frost’s algorithm [1].
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Fig. 2. SINR curves under SNR 15 dB.

VI. CONCLUSION

We have proposed a new receiver filter design based on
the quadratic optimization problem formulation under the
double constraints. We have also presented the dual-domain
adaptive algorithm to implement the proposed RZF receiver.
The simulation results show that drastic improvements of
the performance are achieved due to the use of the side
information incorporated into the algorithm in the form of
the dual-domain projection. A nontrivial conclusion is that
the RZF receiver implemented with the dual-domain adaptive
algorithm defeats the Capon beamformer implemented with
the CNLMS algorithm. Also we emphasize that the proposed
receiver offers a more effective way of exploiting the side
information than the ZF receiver.
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