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This report is a supplementary document to the paper“Outage Probability and Outage-Based

Robust Beamforming for MIMO Interference Channels with Imperfect Channel State Informa-

tion,” by J. Park, Y. Sung, D. Kim and H. V. Poor [Parket12TWC], submitted to IEEE Trans-

actions on Wireless Communications.

I. Distribution of a Non-Central Gaussian Quadratic Form

A. Previous work and literature survey

There exist extensive literature about the probability distribution and statistical properties

of a quadratic form of non-central (complex) Gaussian random variables in the communications

area and the probability and statistics community. Through a literature survey, we found that

the main technique to compute the distribution of a central (or a non-central) Gaussian quadratic

form is based on series fitting, which was concretely unified and developed by S. Kotz [Kotz-67a,

Kotz-67b], and most of other works are its variants, e.g., [Nabar-05]. First, we briefly explain

this series fitting method here.

Consider a Gaussian quadratic form xHQ̄x, where x ∼ CN (µ,Σ) with size n and Q̄ = Q̄H .

The first step of the series fitting method is to convert the non-central Gaussian quadratic form

into a linear combination of chi-square random variables:

xHQ̄x =

n
∑

i=1

λi|zi + δi|
2 =

n
∑

i=1

λi[Re(zi + δi)
2 + Im(zi + δi)

2], (1)

where zi
independent

∼ CN (0, 2) for i = 1, · · · , n, and {δi, λi} are constants determined by Q̄, µ and

Σ. Note that Re(zi) ∼ N (0, 1) and Re(zi) ∼ N (0, 1). Thus, the non-central Gaussian quadratic

form is equivalent to a weighted sum of non-central Chi-square random variables of which moment

generating function (MGF) is known. The MGF of a weighted sum of n independent non-central

χ2 random variables with degrees of freedom 2mi and non-centrality parameter µ2
i is given by

Φ(s) = exp{−
1

2

n
∑

i=1

µ2
i +

1

2

n
∑

i=1

µ2
i

1 − 2λis
} ·

n
∏

i=1

1

(1 − 2λis)mi
. (2)

Note here that Φ(−s) is nothing but the Laplace transform of the probability density function

(PDF) of xHQ̄x or equivalently
∑n

i=1 λi|zi + δi|
2. Now, the series fitting method expresses the

PDF as an infinite series composed of a set of known basis functions and tries to find the linear

combination coefficients so that the Laplace transform of this series is the same as the known
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Fig. 1. Computation of the distribution of a Gaussian quadratic form

Φ(−s). Specifically, let the PDF be

gn(Q̄, µ,Σ; y) =

∞
∑

k=0

ckhk(y), (3)

where {hk(y), k = 0, 1, · · · } is the set of known basis functions and {ck, k = 0, 1, · · · } is the set of

linear combination coefficients to be determined. Here, to make the problem tractable, in most

cases, the following conditions are imposed. First, the sequence {hk(y)} of basis functions is

chosen among measurable complex-valued functions on [0,∞] such that

∞
∑

k=0

|ck||hk(y)| ≤ Aeby, y ∈ [0,∞] almost everywhere, (4)

where A and b are real constants. Second, the Laplace transform ĥk(s) of hk(y) has a special

form:

ĥk(s) = ξ(s)ηk(s), (5)

where ξ(s) is a non-vanishing, analytic function for Re(s) > b, and η(s) is analytic for Re(s) > b

and has an inverse function. The first condition is for the existence of Laplace transform and

the second condition is to make the problem tractable. Finally, with the pre-determined {hk(y)}
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with the conditions, the coefficients {ck} are computed so that

L(gn(Q̄, µ,Σ; y)) =
∞
∑

k=0

ckĥk(s) = Φ(−s), (6)

where L(·) denote the Laplace transform of a function.

Widely used {hk(y)} for the series expansion of the PDF of a quadratic form of non-central

Gaussian random variables is as follows. [Kotz-67a, Kotz-67b]

1. (Power series): hk(y) = (−1)k (y/2)n/2+k−1

2Γ(n/2+k) .

2. (Laguerre polynomials):

hk(y) = g(n; y/β)[k!
Γ(n/2)

βΓ(n/2 + k)
]L

(n/2−1)
k (y/2β), (7)

where g(n; y) is the central χ2 density with n degrees of freedom and L
(n/2−1)
k (x) is the generalized

Laguerre polynomial defined by Rodriges’ formula

L
(n/2−1)
k (x) =

1

k!
exx−(n/2−1) dk

dxk
e−xxk+1

for a > 1 and a positive control parameter β.

For the detail computation of {ck}, please refer to [Kotz-67a, Kotz-67b, Mathai-92]. The whole

procedure is summarized in Fig. 1.

Reference group 1

[Kotz-67a] S. Kotz, N. L. Johnson, and D. W. Boyd, “Series representation of distributions of

quadratic forms in normal variables. I. Central Case,” Ann. Math. Statist., vol, 38, pp. 823 –

837, Jun. 1967.

[Kotz-67b] S. Kotz, N. L. Johnson, and D. W. Boyd, “Series representation of distributions of

quadratic forms in normal variables. II. Non-central Case,” Ann. Math. Statist., vol. 38, pp.

838 – 848, Jun. 1967.

[Mathai-92] A. M. Mathai and S. B. Provost, Quadratic forms in random variables: Theory and

applications, New York:M. Dekker, 1992.

[Nabar-05] R. Nabar, H. Bolcskei, and A. Paulraj, “Diversity and Outage Performance of Space-

Time Block Coded Ricean MIMO Channels”, IEEE Trans. on Wireless Commun., vol. 4, no.

5, Sept. 2005.

Reference group 2
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[Pachares-55] J. Pachares, “Note on the distribution of a definite quadratic form,” Ann. Math.

Statist., vol. 26, pp. 128 – 131, Mar. 1955. ⇒ Power series representation of quadratic form of

central Gaussian random variables.

[Shah-61] B. K. Shah and C. G. Khatri, “Distribution of a definite quadratic form for non-

central normal variates,” Ann. Math. Statist., vol. 32, pp. 883 – 887, Sep. 1961. ⇒ Power

series representation of quadratic form of non-central Gaussian random variables.

[Shah-63] B. K. Shah, “Distribution of definite and of indefinite quadratic forms from a non-

central normal distribution,” Ann. Math. Statis., vol. 34, pp. 186 – 190, Mar. 1963. ⇒ Extends

[Gurland-55] to derive a representation of quadratic form of non-central Gaussian random vector

with Laguerre polynomial. Double series of Laguerre polynomials is required.

[Gurland-55] J. Gurland, “Distribution of definite and indefinite quadratic forms,” Ann. Math.

Statist., vol. 26, pp. 122 – 127, Jan. 1955. ⇒ Provides a simple representation of quadratic

form of central Gaussian random vector in Laguerre polynomial.

[Gurland-56] J. Gurland, “Quadratic forms in normally distributed random variables,” Sankhya:

The Indian Journal of Statistics vol. 17, pp. 37 – 50, Jan. 1956. ⇒ CDF for the indefinite

quadratic form of central random variable.

[Ruben-63] H. Ruben, “A new result on the distribution of quadratic forms,” Ann. Math. Statist.,

vol. 34, pp. 1582 – 1584, Dec. 1963. ⇒ Represents the CDF of quadratic form of central and

non-central Gaussian random vector with central/non-central χ2 distribution function.

[Tiku-65] M. L. Tiku, “Laguerre series forms of non central χ2 and F distributions,” Biometrika,

vol. 52, pp. 415 – 427, Dec. 1965. ⇒ Another series representaion with Laguerre polynomials.

[Davis-77] A. W. Davis, “A differential equation approach to linear combinations of independent

chi-squares,” J. of the Ame. Statist. Assoc. vol. 72, pp. 212 – 214, Mar. 1977. ⇒ Provides

another series representation with power series.

[Imhof-61] J. P. Imhof, “Computing the distribution of quadratic forms in normal variables,”

Biometrika vol. 48, pp. 419 – 426, Dec. 1961. ⇒ Provides a numerical method of computing

the distribution

[Rice-80] S. O. Rice, “Distribution of quadratic forms in normal variables - Evaluation by nu-

merical integration,” SIAM J. Scient. Statist. Comput., vol. 1, no. 4, pp. 438 – 448, 1980. ⇒

Another numerical method of computing distribution.

[Biyari-93] K. H. Biyari and W. C. Lindsey, “Statistical distribution of Hermitian quadratic forms
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in complex Gaussian variables,” IEEE Trans. Inform. Theory, vol. 39, pp. 1076 – 1082, Mar.

1993. ⇒ Series expansion of multi-variate complex Gaussian random variables. This paper deals

with the case that the Hermitian matrix in the quadratic form is a special block-diagonal matrix.

Reference group 3

[Raphaeli-96] D. Raphaeli, “Distribution of noncentral indefinite quadratic forms in complex

normal variables,” IEEE Trans. Inf. Theory, vol. 42, pp. 1002 – 1007, May 1996.

[Al-Naffouri-09] T. Al-Naffouri and B. Hassibi, “On the distribution of indefinite quadratic forms

in Gaussian random variables,” in Proc. of IEEE Int. Symp. Inform. Theory, (Seoul, Korea),

Jun.–Jul. 2009.

B. The difference of our work from the previous works

First, let us remind our outage event in MIMO interference channels. From equations (5), (6)

and (7) in [Parket12TWC], we have

Pr{outage} = Pr







K
∑

i=1

d
∑

j=1

X
(mj)H
ki X

(mj)
ki ≥

|u
(m)H
k Ĥkkv

(m)
k |2

2R
(m)
k − 1

− σ2 =: τ







, (8)

where X
(mj)
ki is a non zero-mean Gaussian random variable. Note that the outage probability is

an upper tail probability of the distribution of the Gaussian quadratic form
∑d

j=1 X
(mj)H
ki X

(mj)
ki .

However, as seen in Fig. 2, the most widely-used series fitting method explained in the previous

subsection yields a good approximation of the distribution at the lower tail not at the upper tail.

The discrepancy between the series and the true PDF is large at the upper∗ tail for a truncated

series. On the other hand, our approach yields a good approximation to the true distribution at

the upper tail. Thus, the proposed series is more relevant to our problem than the series fitting

method.

Our approach to the upper tail approximation is based on the recent works by Raphaeli

[Raphaeli-96] and by Al-Naffouri and Hassibi [Al-Naffouri-09]. First, let us explain Raphaeli’s

method. The procedure in Fig. 1 up to obtaining the MGF of the Gaussian quadratic form

is common to both the sequence fitting method and Raphaeli’s method. However, Raphaeli’s

method obtains the PDF by direct inverse Laplace transform of the MGF Φ(s). Typically, the

∗In the case of the problem considered in [Nabar-05], the outage defined in [Nabar-05] is associated with the

lower tail of the distribution and thus the series fitting method is well suited to that case. However, our system

setup and considered problem are different from those in [Nabar-05].
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Fig. 2. Series fitting method versus direct inverse Laplace transform method: number of variables = 4,

µ = 0.51, Q̄ = [1, 0.5, 0, 0; 0.5, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], and Σ = 0.3I. (a) β = 1 and (b) β = 2. (β

is the control parameter for the Laguerre polynomials in (7).) Note that the convergent speed of the

series fitting method based on the Laguerre polynomials depends much on β. In the case of β = 2,

the series fitting method based on the Laguerre polynomials yields large errors at the upper tail. It

is not simple how to choose β and an efficient method is not known. (One cannot run simulations for

empirical distributions for all cases.) The series fitting method based on the power series shows bad

performance, and it cannot be used in practice.

inverse Laplace transform of the MGF is represented as a complex contour integral and then the

complex contour integral is computed as an infinite series by the residue theorem. However, to

obtain the cumulative distribution function (CDF), which is actually necessary to compute the

tail probability, Raphaeli’s method requires one more step, the integration of the PDF, to obtain

the CDF since the MGF Φ(s) is the Laplace transform of the PDF.

In [Parket12TWC], to obtain the CDF of a general Gaussian quadratic form, we did not use the

MGF Φ(s), which is a bit complicated and requires an additional step, like Raphaeli, but instead

we directly used a simple contour integral for the CDF, eq. (12) in [Parket12TWC], obtained

by Al-Naffouri and Hassibi [Al-Naffouri-09].† Then, the contour integral was computed as an

†In [Al-Naffouri-09], Al-Naffouri and Hassibi obtained the contour integral, eq. (12) in [Parket12TWC] for the

CDF of a Gaussian quadratic form. However, they did not obtain closed-form series expressions for the contour

integral in general cases except a few simple cases. The main goal of [Al-Naffouri-09] was to derive a nice and

simple contour integral form for the CDF.
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infinite series by the residue theorem. (Using the residue theorem is borrowed from Raphaeli’s

work.) Thus, our result is simpler than Raphaeli’s approach and does not require the integration

of a PDF for the CDF.

As mentioned already, the series expansion in [Parket12TWC] has a particular advantage over

the series fitting method considered in [Nabar-05] for the outage event defined in [Parket12TWC];

The series in [Parket12TWC] fits the upper tail of the distribution well with a few number of

terms. We shall provide a detailed proof for this in a special case in the next subsection. Thus,

our series expressions for outage probability in MIMO interference channels are meaningful and

relevant.

II. Computational Issues and Convergence of the Obtained Series

A. Computing higher order derivatives

Recall the general outage expression in Theorem 1 in [Parket12TWC]:

Pr{outage} = Pr{log2(1 + SINR
(m)
k ) ≤ R

(m)
k }

= −
κ
∑

i=1

e
−( τ

λi
+
∑κi

j=1 |χ
(j)
i |2)

λκi
i

∞
∑

n=κi−1

1

n!
g
(n)
i (0)

1

(n − κi + 1)!

(

∑κi
j=1 |χ

(j)
i |2

λi

)n−κi+1

,(9)

where

gi(s) =
eτs

s − 1/λi
·
exp

(

−
∑

p 6=i
(s−1/λi)λp

1+(s−1/λi)λp

∑κp

q=1 |χ
(q)
p |2

)

∏

p 6=i

(

1 + (s − 1/λi)λp

)κp
. (10)

To compute (9), we need to compute

• {λi} (the eigenvalues of the Kd × Kd covariance matrix Σ = ΨΛΨH),

• {χ
(j)
i } (the elements of Kd vector χ = Λ−1/2ΨH

µ, where µ is the mean vector of the Gaussian

distribution),

• and the higher order derivatives of gi(s).

The computation of {λi} and {χ
(j)
i } is simple since the sizes of the mean vector and the covariance

matrix are Kd and Kd × Kd, respectively. Furthermore, the higher order derivatives of gi(s)

can also be computed efficiently based on recursion [Mathai-92],[Raphaeli-96]. Note that gi(s) =
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elog gi(s). Thus, the derivative of gi(s) can be written as

g
(1)
i (s) = gi(s)[log gi(s)]

(1),

g
(2)
i (s) = g

(1)
i (s)[log gi(s)]

(1) + gi(s)[log gi(s)]
(2),

...

g
(n)
i (s) =

n−1
∑

l=0

(

n − 1

l

)

g
(l)
i (s)[log gi(s)]

(n−l), n ≥ 1 (11)

where g
(l)
i (s) and [log gi(s)]

(l) denote the l-th derivatives of gi(s) and log gi(s), respectively. Here,

[log gi(s)]
(n) can be computed from (10) as

[log gi(s)]
(n) = τδ1n−

(n − 1)!(−1)n−1

(s − 1/λi)n
−
∑

p 6=i

n!(−1)n−1λn
p

(1 + λp(s − 1/λi))n+1

κp
∑

q=1

|χ(q)
p |2−

∑

p 6=i

(n − 1)!(−1)n−1κpλ
n
p

(1 + λp(s − 1/λi))n

where δ1n is Kronecker delta function. Thus, for given gi(s) and [log gi(s)]
(l), we can compute

g
(l)
i (s) efficiently in a recursive way, as shown in (11).

B. Convergence analysis

In this subsection, we provide some convergence analysis on the derived series expansion in

[Parket12TWC]. Consider the general result in Theorem 1 of [Parket12TWC] for the CDF of a

Gaussian quadratic form:

Pr{Y ≤ y} = 1 +
κ
∑

i=1

e
−( y

λi
+
∑κi

j=1 |χ
(j)
i |2)

λκi
i

∞
∑

n=κi−1

1

n!
g
(n)
i (0, y)

1

(n − κi + 1)!

(

∑κi
j=1 |χ

(j)
i |2

λi

)n−κi+1

(12)

where

gi(s, y) =
esy

s − λ−1
i

·
exp

(

−
∑

p 6=i
(s−1/λi)λp

1+(s−1/λi)λp

∑κp

q=1 |χ
(q)
p |2

)

∏

p 6=i

(

1 + (s − 1/λi)λp

)κp
.

Here, we explicitly use the variable y as an input parameter of the function gi(s) for later

explanation. g
(n)
i (s, y) denotes the n-th partial derivative of gi(s, y) with respect to s. (Here, κ is

the number of distinct eigenvalues of the Kd × Kd covariance matrix Σ and κi is the geometric

order of eigenvalue λi.
∑κ

i=1 κi = Kd.) The residual error caused by truncating the infinite

series after the first N terms is given by

RN (y) =
κ
∑

i=1

e
−( y

λi
+
∑κi

j=1 |χ
(j)
i |2)

λκi
i

∞
∑

n=N+1

1

n!
g
(n)
i (0, y)

1

(n − κi + 1)!

(

∑κi
j=1 |χ

(j)
i |2

λi

)n−κi+1

, (13)
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and we have

Pr{Y ≤ y; infinite sum} = Pr{Y ≤ y; truncation at N} + RN (y).

The truncation error RN (y) can be expressed as

RN (y) =
κ
∑

i=1

Ri
N (y), (14)

where

Ri
N (y) =

e
−( y

λi
+
∑κi

j=1 |χ
(j)
i |2)

λκi
i

∞
∑

n=N+1

1

n!
g
(n)
i (0, y)

1

(n − κi + 1)!

(

∑κi
j=1 |χ

(j)
i |2

λi

)n−κi+1

(15)

for each 1 ≤ i ≤ κ. Then, the magnitude of each term |Ri
N (y)| in the truncation error is bounded

as

|Ri
N (y)| ≤

1

λκi
i

exp

{

−

(

y

λi
+

κi
∑

j=1

|χ
(j)
i |2

)}

·
∞
∑

n=N+1

1

n!

∣

∣

∣
g
(n)
i (0, y)

∣

∣

∣
·

1

(n − κi + 1)!

(

∑κi
j=1 |χ

(j)
i |2

λi

)n−κi+1

.

(16)

As seen in Fig. 2, our series expansion fits the upper tail distribution first. Now, to assess the

overall convergence speed of our series, for the same step as in Fig. 2, we ran some simulations

to obtain an empirical distribution, and computed the overall mean square error (MSE) between

the truncated series and the empirical distribution over 0 ≤ y ≤ 10 as

CDF MSE =
1

200

200
∑

i=1

∣

∣

∣
Pr{Y ≤ yi; N, type of series} − Pr{Y ≤ yi; empirical}

∣

∣

∣

2
,

where {yi} are the uniform samples of [0, 10]. Fig. 3 shows the CDF MSE of the three methods

in Fig. 2: the proposed series, the series fitting method with β = 1 and the series fitting method

with β = 2. It is seen in Fig. 3 that the overall convergence of the proposed series can be worse

than the series fitting method at the small values for the number of summation terms for the

setting in Fig. 2. The bad overall convergence is due to worse fitting at the lower tail of the

distribution, but the bad lower tail approximation is not important to our outage computation.

(Please see Fig. 2.) Fig. 4 shows another case. In this case, the proposed series outperforms the

series fitting method both in the overall convergence and in the upper tail convergence. It is seen

numerically that the proposed series fits the upper tail distribution first. Now, we shall prove

this property of the proposed series. However, it is a difficult problem to prove this property in

general cases. Thus, in the next subsection, we provide a proof of this property when the number

of distinct eigenvalues of the covariance matrix Σ is one, e.g., in the i.i.d. case.
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Fig. 4. number of variables = 4, µ = 0.51, Q̄ = I, and Σ = [0.2641 0.0328 0.1963 0.1140; 0.0328 0.6097 −

0.1739 0.1708; 0.1963 −0.1739 0.8746 −0.0022; 0.1140 0.1708 −0.0022 0.1250]. In this case eigenvalues

are 1.0000, 0.6318, 0.2158, and 0.0259 with β = 1. (a) CDF, (b) CDF MSE. Uniform sample of y is

taken over [0, 15.9].

B.1 The identity covariance matrix case

Suppose that there is only one eigenvalue, λ (> 0), with multiplicity κ for the covariance

matrix Σ. This case corresponds to Corollary 4 in [Parket12TWC], and the outage probability

Jan. 14, 2010 DRAFT
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is given by

Pr{Y ≤ y} = 1 +
exp(−η2)

λκ
exp

(

−
y

λ

)

∞
∑

n=κ−1

g(n)(0, y)
(η2/λ)n−κ+1

n!(n − κ + 1)!
, (17)

where

g(s, y) =
eys

s − λ−1
(18)

and η2 =
∑κ

j=1 |χ
(j)|2. The residual error caused by truncating the infinite series after the first

N terms is given by

RN (y) =
exp(−η2)

λκ
exp

(

−
y

λ

)

∞
∑

n=N+1

g(n)(0, y)
(η2/λ)n−κ+1

n!(n − κ + 1)!
. (19)

Before we proceed, we first obtain the n-th derivative of g(s, y) at s = 0, which is given in the

following lemma.

Lemma 1: For n ≥ 0,

g(n)(0, y) = −λ

n
∑

k=0

n!

(n − k)!
λkyn−k. (20)

Proof: Proof is given by induction. The validity of the claim for n = 0, 1 and 2 is shown by

direction computation:

g(0)(0, y) = =
yeys

s − 1/λ

∣

∣

∣

∣

s=0

= −λ = −λ
0
∑

k=0

0!

(0 − k)!
λky0−k,

g(1)(0, y) = =
yeys(s − 1/λ) − eys

(s − 1/λ)2

∣

∣

∣

∣

s=0

= −λ(y + λ) = −λ
1
∑

k=0

1!

(1 − k)!
λky1−k,

g(2)(0, y) =
(yeys(ys − y/λ − 1) + eysy) (s − 1

λ)2 − 2eys(ys − y/λ − 1)(s − 1
λ)

(s − 1/λ)4

∣

∣

∣

∣

s=0

= −λ(y2 + 2λy + 2λ2) = −λ
2
∑

k=0

2!

(2 − k)!
λky2−k.

Now, suppose that (20) holds up to the (n − 1)-th derivative of g(s, y). From the recursive

formula in (11), g(n)(0, y) is obtained as

g(n)(0, y)

=
n−1
∑

k=0

(

n − 1

k

)

g(k)(0, y)(log g(0, y))(n−k)

=

(

n − 1

0

)

g(0)(0, y)(log g(0, y))(n) +

(

n − 1

1

)

g(1)(0, y)(log g(0, y))(n−1) + · · · +

(

n − 1

n − 1

)

g(n−1)(0, y)(log g(0, y))(1).

(21)
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Since [log g(s)] = ys− log(s−1/λ), we can easily see that [log g(0)](1) = y +λ and [log g(0)](n) =

(n − 1)!λn for n ≥ 2. Therefore, (21) can be rewritten as

g(n)(0, y) =(n − 1)!g(0, y)λn + (n − 1)g(1)(0, y)(n − 2)!λn−1 +

(

n − 1

2

)

g(2)(0, y)(n − 3)!λn−2 + · · ·

+(n − 1)g(n−2)(0, y)λ2 + g(n−1)(0, y)(y + λ)

=(n − 1)!g(0, y)λn + (n − 1)!g(1)(0, y)λn−1 +
(n − 1)!

2
g(2)(0, y)λn−2 + · · ·

+ (n − 1)g(n−2)(0, y)λ2 + λg(n−1)(0, y) + yg(n−1)(0, y)

(a)
= − λ

[

n−1
∑

l=0

(n − 1)!

l!

(

l
∑

k=0

l!

(l − k)!
λkyl−k

)

λn−l+y
n−1
∑

m=0

(n − 1)!

(n − m − 1)!
λmyn−m−1

]

= − λ

[

n−1
∑

l=0

(n − 1)!

l!

(

l
∑

k=0

l!

(l − k)!
λkyl−k

)

λn−l +
n−1
∑

m=0

(n − 1)!

(n − m − 1)!
λmyn−m

]

(22)

where (a) holds since (20) holds for all g(0)(0, y), · · · , g(n−1)(0, y) by the induction assumption.

Here, consider the coefficient of each yi in (22) for i = 0, · · · , n.

i) yn is obtained only when m = 0. The coefficient of yn from (22) is therefore given by −λ. It

corresponds to the coefficient of yn in (20).

ii) For 0 < p ≤ n, the coefficient of yn−p is obtained by considering all (l, k) that satisfies

l − k = n − p due to the first term in the right-hand side (RHS) of (22), and m = p due to

the second term of the RHS of (22). In the first case, we obtain yn−p with the following pairs

(l, k) = (n − 1, p − 1), (n − 2, p − 2), · · · , (n − p, 0). For these (l, k) pairs, we have

−λ
n−1
∑

l=n−p

(n − 1)!

l!
·

(

l!

(n − p)!
λl−n+pyn−p

)

·λn−l = −λ
n−1
∑

l=n−p

(n − 1)!

(n − p)!
λpyn−p = −λp

(n − 1)!

(n − p)!
λpyn−p.

(23)

In the second case of m = p, we have

−λ
(n − 1)!

(n − p − 1)!
λpyn−p. (24)

Finally, the coefficient of yn−q is given by adding (23) and (24):

−λ

(

(n − 1)!

(n − p − 1)!
+ p

(n − 1)!

(n − p)!

)

λpyn−p

= −λ
(n − 1)!

(n − p − 1)!

(

1 +
p

n − p

)

λpyn−p

= −λ
n!

(n − p)!
λpyn−p,
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which is equivalent to the coefficient for yn−p in (20) (0 < p ≤ n). Thus, (20) holds for g(n)(0, y).

�

Note that g(n)(0, y) < 0 for all n ≥ 0 from (20). Therefore, RN (y) ≤ 0 for all N and y and

|g(n)(0, y)| = −g(n)(0, y).

Now, consider the residual error term RN (y) in (19). The magnitude of the residual error can

be upper bounded as follows:

|RN (y)| =
exp(−η2)

λκ
· exp

(

−
y

λ

)

∞
∑

n=N+1

|g(n)(0, y)|
(η2/λ)n−κ+1

n!(n − κ + 1)!

=
exp(−η2)

λκ
· exp

(

−
y

λ

)

∞
∑

n=N+1

(−g(n)(0, y))
(η2/λ)n−κ+1

n!(n − κ + 1)!

= −
exp(−µ2)

λκ
· exp

(

−
y

λ

)

∞
∑

n=N+1

g(n)(0, y)
(η2/λ)n−κ+1

n!(n − κ + 1)!

= −
exp(−η2)

λκ
· exp

(

−
y

λ

)

∞
∑

n=N+1

1

n!
g(n)(0, y)

( 1

2λ

)n (2η2)n−κ+1(2λ)κ−1

(n − κ + 1)!

= −(2λ)κ−1 ·
exp(−η2)

λκ
· exp

(

−
y

λ

)

∞
∑

n=N+1

1

n!
g(n)(0, y)

( 1

2λ

)n (2η2)n−κ+1

(n − κ + 1)!

(a)

≤ −(2λ)κ−1 ·
exp(−η2)

λκ
· exp

(

−
y

λ

)

∞
∑

n=N+1

1

n!
g(n)(0, y)

( 1

2λ

)n
exp(2η2)

= −
2κ−1

λ
exp(η2) · exp

(

−
y

λ

)

∞
∑

n=N+1

1

n!
g(n)(0, y)

( 1

2λ

)n

(b)

≤ −
2κ−1

λ
exp(η2) · exp

(

−
y

λ

)

·
∞
∑

n=0

1

n!
g(n)(0, y)

( 1

2λ

)n

(c)
= −

2κ−1

λ
exp(η2) · exp

(

−
y

λ

)

· g

(

1

2λ
, y

)

(d)
= −

2κ−1

λ
exp(η2) · exp

(

−
y

λ

)

·
exp(y/2λ)

−1/2λ

= 2κ exp(η2) · exp
(

−
y

2λ

)

(25)

where (a) is from γk

k! ≤ exp(γ) =
∑∞

p=0 γp/p! for any γ > 0, (b) is from the fact that summand

is negative, (c) is by using the Taylor series expansion, and (d) is from (18). Since η is a fixed

constant, from (25), for any N ≥ 0

lim
y→∞

|RN (y)| = 0. (26)

Thus, it is clear that the proposed series converges from the upper tail distribution!
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Now, let us consider the residual error magnitude as a function of y for given N . From (20),

we have
∂g(n)(0, y)

∂y
= ng(n−1)(0, y). (27)

Differentiating RN (y) with respect to y yields

∂RN (y)

∂y
=

exp(−η2)

λκ

(

−
1

λ

)

exp
(

−
y

λ

)

∞
∑

n=N+1

g(n)(0, y)
(η2/λ)n−κ+1

n!(n − κ + 1)!

+
exp(−η2)

λκ
exp

(

−
y

λ

)

∞
∑

n=N+1

∂g(n)(0, y)

∂y
·

(η2/λ)n−κ+1

n!(n − κ + 1)!

=
exp(−η2)

λκ
exp

(

−
y

λ

)

∞
∑

n=N+1

(η2/λ)n−κ+1

n!(n − κ + 1)!

(

−
1

λ
g(n)(0, y) + ng(n−1)(0, y)

)

. (28)

Furthermore, from (20) we have

−
1

λ
g(n)(0, y) + ng(n−1)(0, y) = yn. (29)

By substituting (29) into (28), we have

∂RN (y)

∂y
=

exp(−η2)

λκ
exp

(

−
y

λ

)

∞
∑

n=N+1

(η2/λ)n−κ+1yn

n!(n − κ + 1)!
, (30)

which is positive. Since RN (y) ≤ 0, limy→∞ RN (y) = 0 and ∂RN (y)
∂y > 0, the residual error

magnitude monotonically decreases as y increases and the maximum error occurs at y = 0 for

any given N .

Now, let us compute the worst truncation error RN (0), which is given by

RN (0) =
exp(−η2)

λκ

∞
∑

n=N+1

g(n)(0, 0)
(η2/λ)n−κ+1

n!(n − κ + 1)!
. (31)

From (20), we have g(n)(0, 0) = −n!λn+1. Therefore,

RN (0) =
exp(−η2)

λκ

∞
∑

n=N+1

(−n!λn+1)
(η2/λ)n−κ+1

n!(n − κ + 1)!

= −
exp(−η2)

λκ

∞
∑

n=N+1

λn+1 (η2/λ)n−κ+1

(n − κ + 1)!

= −
exp(−η2)

λκ

∞
∑

n=N+1

(η2)n−κ+1

(n − κ + 1)!
· λκ

= − exp(−η2)
∞
∑

n=N+1

(η2)n−κ+1

(n − κ + 1)!
. (32)
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From (17), N ≥ κ − 2. For general N ≥ κ − 2, let m = n − κ + 1. Then,

RN (0) = − exp(−η2)
∞
∑

m=N−κ+2

(η2)m

m!
.

Note that
∑∞

m=N−κ+2
(η2)m

m! is the residual error of the Taylor series expansion of exp(x) after

the first (N − κ + 1) terms. By the Taylor theorem,

∞
∑

m=N−κ+2

(η2)m

m!
=

(η2)N−κ+2

(N − κ + 2)!
exp(αη2) (33)

where some α ∈ [0, 1]. Therefore, the worst truncation error is given by

|RN (0)| = exp
(

(α − 1)η2
)

×
(η2)N−κ+2

(N − κ + 2)!
≤

(η2)N−κ+2

(N − κ + 2)!
, (34)

where the inequality holds since exp((α − 1)η2) ≤ 1 for 0 ≤ α ≤ 1. Furthermore, the residual

error magnitude is a strictly decreasing function of N for any y,

|RN (y)| > |RN+1(y)|. (35)

This can be shown easily as follows.

RN (y) =
exp(−η2)

λκ
exp

(

−
y

λ

)

∞
∑

n=N+1

g(n)(0, y)
(η2/λ)n−κ+1

n!(n − κ + 1)!

=
exp(−η2)

λκ
exp

(

−
y

λ

)

{

∞
∑

n=N+2

g(n)(0, y)
(η2/λ)n−κ+1

n!(n − κ + 1)!
+ g(N+1)(0, y)

(η2/λ)N−κ+2

(N + 1)!(N − κ + 2)!

}

=RN+1(y) +
exp(−η2)

λκ
exp

(

−
y

λ

)

· g(N+1)(0, y)
(η2/λ)N−κ+2

(N + 1)!(N − κ + 2)!
.

Since RN (y) < 0 and g(N+1)(y) < 0 for all y ≥ 0 and N , we have (35). Now, based on (34) and

(35), with given χk and σ2
h, we can compute the required number N of terms in the series to

achieve the desired level of accuracy since η2 is known.

Finally, consider the worst case of N = κ − 2 and y = 0:

Rκ−2(0) = − exp(−η2)
∞
∑

n=κ−1

(η2)n−κ+1

(n − κ + 1)!
= − exp(−η2)

∞
∑

m=0

(η2)m

m!
= −1,

where the second equality is by replacing m = n − κ + 1. It is easy to see that the worst

case error is -1 in the identity covariance matrix case. Fig. 5 shows the performance of the

proposed series expansion in the case of the identity covariance matrix. The numerical results

well match our theoretical analysis in this subsection. From the figure, it seems reasonable to

choose N ≥ 20 ∼ 30 for accurate outage probability computation.
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Fig. 5. number of variables = 4, µ = 0.51, Q̄ = I, and Σ = 0.1I.
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